US elections: Goldsmiths data science research links voting habits with sickness & death

trump

A new dissertation by MSc Data Science student Caroline Butler highlights the relationship between health and politics in the USA.

MSc Data Science student Caroline Butler has been investigating whether there is a relationship between mortality among middle-aged white Americans, social and economic well-being, and the 2016 presidential primary election outcomes at county-level.

Her research suggests that middle-aged white Americans living in counties with higher death rates are more cautious voters. That is, they are more likely to vote for a safe bet over a wildcard such as Trump.

After analysing data from the United States Center for Disease Control’s WONDER tool, the United States Census Bureau’s County QuickFacts, and the Kaggle forum, 2016 US Election, Caroline discovered a pattern connecting death rates to voting.

Contrary to expectations, a one unit increase in the all-cause mortality rate increased log odds of Hillary Clinton winning in that county’s Democratic presidential election primary by 1.5693 compared to Bernie Sanders. However, this result could have been skewed by Bernie Sanders’ younger fan base.

To Caroline’s surprise, a one unit increase in the all-cause mortality rate decreased log odds of Donald Trump winning his primary in a county by 1.4371.

The project was inspired by recent evidence that drug and alcohol poisoning, suicide and chronic liver diseases have caused the mortality rate among middle-aged white people in the United States to increase. At the same time, anti-establishment candidates, such as Donald Trump and Bernie Sanders, have achieved unexpected success.

In a follow-up investigation to her project, Caroline ran her data on mortality, socio-economic status of a county, and which state the counties were in through the CHAID machine learning algorithm, and found that with 85-89% accuracy, you could predict who would win the primary for each political party.

Her results suggest that for both white people and all races combined, the social and economic well-being of a county is as much related to the outcomes of the 2016 primary election as the mortality rates of middle aged Americans is.

“Understanding whether mortality data for middle-aged white Americans is associated with political viewpoints is important not only from a political perspective, but also for purposes of developing appropriate public health directives,” Caroline explains.

“I was surprised to find that in areas with higher mortality rates, people were more likely to vote for Clinton over Sanders in the primaries – but I’d suggest this could be because Sanders had a high number of young, so generally more healthy, voters.

“A similar study should definitely be done for the United States Presidential Election so we can compare the voting patterns from the Democratic Party to the votes from the Republican Party.”



Adapted from a Goldsmiths news article by Sarah Cox

EVENT: Goldsmiths Global Game Jam

GlobalGameJam2013_Welcome

Goldsmiths students and staff – join us for the Global Game Jam 2016, hosted by Hacksmiths, IGGI and the Goldsmiths Computing Department.

Spend a weekend making a game with some of the most creative students in London! No need to form teams beforehand – just turn up and join in.

When: 4pm Friday 29 January – 7pm Sunday 31 January 2016
Where: St James Hatcham Building (the church), Goldsmiths, St James. New Cross, London SE14 6NW
Tickets: Free. Reserve a space now

Space is limited, so be sure to reserve a ticket. We’ll open participant registration on our GGJ page when the jam has started.

Open to Goldsmiths students and staff only.


Study Games Computing at Goldsmiths:

‘Mathematics & Art’ book review by Prof William Latham

Professor of Computing William Latham recently reviewed the book Mathematics and Art for New Scientist magazine. We reprint his review here, with added hyperlinks and images.


From Renaissance painters’ first use of perspective to artistic algorithms shaping 21st-century works, mathematics and art have a long, rich history. “Cells and tissues, shell and bone, leaf and flower, are so many portions of matter, and it is their obedience to the laws of physics that their particles have been moved, molded and conformed. Their problems of form are in the first instance mathematical problems,” wrote the Scottish polymath D’Arcy Wentworth Thompson in his influential 1917 book, On Growth and Form.

This is a text that the author of the excellent new book, Mathematics and Art, has taken to heart and built on. In 500-plus, sumptuously illustrated pages, Lynn Gamwell has interleaved mathematics and culture (art, in particular) from 3000 BC to the present day, as she works to show how artists have harnessed maths for their own creative goals and how the arts, albeit to a lesser extent, have influenced maths.

flagellation700

There are many telling examples. Take Piero della Francesca’s 1455 painting The Flagellation of Christ, in which he positioned Jesus in a three-dimensional, naturalistic scene rather than an out-of-scale figure on a flat, 2D plane as his early Renaissance predecessors such as Giotto had done. This was a radical and daring innovation. What made it possible was the painter’s use of a set of new mathematical rules, which we now call linear perspective, that had been invented by mathematician and architect Filippo Brunelleschi.

Brunelleschi had himself been influenced by an 11th-century Islamic treatise on optics and visual distortion that had helped shape his ideas on perspective. This single mathematical step was to influence the whole of Western art, as exemplified in works by Leonardo da Vinci, Hans Holbein, Albrecht Dürer, Salvador Dali and, of course, M. C. Escher.

“Early Renaissance artists no longer painted saints floating in a golden mist in a faraway place; linear perspective gave them the tool to depict Jesus and the apostles existing right here, right now before their eyes in the natural world,” writes Gamwell.

Mandel_zoom_08_satellite_antenna

There have been many examples of these mathematical cross-overs: think of Mandelbrot’s fractal maths translated into psychedelic-style computer art in the 1980s, or the influence of quantum mechanics on post-modernist painting and sculpture. They may not all be of the same magnitude as Francesca’s use of perspective but they are significant, and it’s illuminating to discover the background to these innovations.

It’s also important to recognise how many mathematical fields inform art. Crystallography, celestial geometry, phyllotaxis, differential calculus – all helped to shape Renaissance art and movements such as surrealism, constructivism, pop art and minimalism.

Mathematics and Art is split in two, with the first section bringing us up to about 1900, and serving as a handbook for readers who want to choose specific topics. Among the mathematical gems and anecdotes, Gamwell cites conversations between da Vinci and Franciscan friar and mathematician Luca Pacioli discussing what would become Pacioli’s book, On The Divine Proportion. There are also reproductions of John Dalton’s rough but extraordinary diagrams of atomic elements from 1806.

The second half, post-1900, has fewer diagrams and works less well as a mathematical handbook. Instead, its strong suit is the presentation of the philosophical relationship between the arts and maths – as when Gamwell discusses the detail of quantum mechanics, taking Antony Gormley’s Quantum Cloud V sculpture as her hook.

Gamwell also dives into the compelling area of how we measure aesthetic value, citing George D. Birkhoff’s attempts in the 1930s to reduce aesthetics to a mathematical formula, M=O:C, or the amount of aesthetic pleasure produced by an object (M) equals the ratio of the object’s order (O) to its complexity (C).

“George D. Birkhoff attempted to reduce aesthetics to a single mathematical formula”
This is particularly relevant to the emerging field of creative robotics, where the goal is, apparently, to create a robot that will create art for its own aesthetic enjoyment, emulating the human creative process.

Gamwell must have had her work cut out deciding what to include and exclude in what aims to be a comprehensive tome. There are casualties. In the computation section, for example, it was right to make much of fractal mathematics, Alan Turing, John Conway’s Game of Life and computer artworks by Roman Verostko, Manfred Mohr and Yoichiro Kawaguchi. But some classic computer graphic algorithms are missing, such as Ken Perlin’s noise texture algorithm or the Blinn-Phong reflection model, which have had a major impact across the arts and in film.

And we really do need more than a brief reference to artist Robert Rauschenberg, composer John Cage and the Experiments in Art and Technology group’s show in 1966 at The Armory in New York. The group was set up to foster collaborations between artists and engineers through direct personal contact rather than through any kind of formal process. The creative talents that came together then helped define the work of a generation – and generations to come.

Overall this is a comprehensive, valuable and detailed book. It is written in an accessible style, with enough mathematics to interest the technical reader without overwhelming one with an arts background. It doesn’t quite rival Douglas Hofstadter’s hugely influential Gödel, Escher, Bach from 1979, but its rich anthology is particularly relevant today, given the explosion of interest in the digital arts and the need for digital artists to use maths creatively. I will definitely be keeping it close at hand.


 

Postgraduate degrees at Goldsmiths Computing include:

Music Computing graduate wins top prize at Human-Computer Interaction conference

Music Computing graduate Pedro Kirk has won first prize in the student research competition at CHI 2015 conference in Seoul, Korea.

His paper Can Specialised Electronic Musical Instruments Aid Stroke Rehabilitation? won the top prize for any student in the field of Human-Computer Interaction. He successfully beat students from every other institution who applied, including MIT, Georgia Tech, University of Washington and Carnegie Mellon University.

Now studying on the MSc in Music Mind & Brain at Goldsmiths, he presented work that he produced as part of his year 3 undergraduate Music Computing project, which he showed at the 2014 Undergraduate Degree Show.

Abstract
Stroke patients often have limited access to rehabilitation after discharge from hospital leaving them to self-regulate their recovery. Previous research has indicated that several musical approaches can be used effectively in stroke rehabilitation.

Stroke patients (n = 43), between 6 months and 19 years post-stroke, took part in specially created workshops playing music, both in groups and individually, using a number of digital musical interfaces. Feedback forms were completed by all participants, which helped to develop the prototypes and gain insights into the potential benefits of music making for rehabilitation.

93% of participants stated they thought that the music workshops were potentially beneficial for their rehabilitation. The research project contributes to the field of HCI by exploring the role of computer based systems in stroke rehabilitation.


* Copyright is held by the owner/author(s). CHI’15 Extended Abstracts. Apr 18-23, 2015, Seoul, Republic of Korea.
ACM  978 -1-4503-3146-3/15/04.

Baroesque Barometric Skirt


PhD candidate Rain Ashford at Goldsmiths has developed a ‘smart skirt’ which changes colour in response to environmental temperature, pressure and altitude.

The skirt also changes depending on the wearers own body temperature.

In June 2013 the skirt was presented at Smart Textiles Salon in Ghent, Belgium and has this month been featured in the New Scientist.

New Scientist article uncovers automatic art

newscientistAn article in this week’s New Scientist magazine provides a short history of Automatic Art – from Russian Constructivism to protein visualisations and acid house album art.

The article gives an overview of the new exhibition, Automatic Art, which explores how art built on logical and mathematical rules ended up giving science new ways of seeing the world.

The Shamen’s Heal (The Separation) video from 1995, directed by William Latham, now Professor of Computing at Goldsmiths.

Video: Plaid & Bruno Zamborlin create music with radiators, coins and fences

Goldsmiths PhD student Bruno Zamborlin is a technologist, music technology researcher and live performer. His research focuses on how gestural interaction with everyday objects can be used to create new interfaces for musical expression.

In this video he demonstrates his Mogees project, performing with British experimental dance music pioneers Plaid.

Zamborlin discusses his work in this month’s WIRED magazine.

bruno-wired