

Foreword
The International Joint Workshop on Computational Creativity began life as two independent workshop
series: the Creative Systems Workshops and the AISB Symposia on AI and Creativity in the Arts and
Sciences. The two series merged in 2004, when the 1st IJWCC was held in Madrid, as a satellite workshop
of the European Conference on Case Based Reasoning. Since then, two further satellite worshops have
been held, at the International Joint Conference on Artificial Intelligence in Edinburgh, in 2005, and at the
European Conference on Artificial Intelligence in Riva del Garda, in 2006.

This workshop constitutes the workshop’s first attempts at independent existence, and the quality of the
papers submitted suggests that the time is now ripe. This workshop received 27 submissions, all of which
were subjected to rigorous peer review (at least 3 reviewers to each paper), and 17 full papers and 3 posters
were accepted (one poster was subsequently withdrawn).

We believe this volume represents a coming of age of the field of computational creativity. It contains
evidence of not only improvements in the state of the art in creative systems, but also of deep thinking
about methodology and philosophy. An exciting new development is the inclusion, for the first time, of
a session on applied creative systems, demonstrating that the field is now ready and able to impinge on
broader artificial intelligence and cognitive science research.

As co-chairs, we would like to thank the programme committee and reviewers, our able local assistants,
Ollie Bown and Marcus Pearce, and all those who submitted papers to make this a really exciting event.

Amı́ilcar Cardoso & Geraint A. Wiggins
Workshop co-chairs

Programme Committee and Reviewers
Barnden, John A – University of Birmingham
Bown, Oliver – Goldsmiths, University of London
Brown, David – Worcester Polytechnic Institute
Cardoso, Amilcar – University Of Coimbra
Collomosse, John – University of Bath
Colton, Simon – Imperial College London
Gervás, Pablo – Universidad Complutense de Madrid
Gomes, Paulo – University of Coimbra
Keller, Robert – Harvey Mudd College
Leite, João – New University of Lisbon
López, Jesús – University of Southern Queensland
López de Màntaras, Ramon – IIIA-CSIC
Machado, Penousal – University of Coimbra
Magnani, Lorenzo – University of Pavia
Moffat, David C. – Glasgow Caledonian University
O’Donoghue, Diarmuid P. – NUI Maynooth University
Pearce, Marcus T. – Goldsmiths, University of London
Pease, Alison – University of Edinburgh
Pereira, Francisco Câmara – University of Coimbra
Pérez y Pérez, Rafael – Autonomous Metropolitan University of Mexico
Rauchas, Sarah – Goldsmiths, University of London
Ritchie, Graeme – University of Aberdeen
Saunders, Rob – University of Sydney
Seco, Nuno – University of Coimbra
Stock, Oliviero – ITC-irst
Veale, Tony – University College, Dublin
Widmer, Gerhard – University of Linz
Wiggins, Geraint A. – Goldsmiths, University of London

Computational Creativity 2007

i

Computational Creativity 2007

ii

Contents

Keynote
Text representation of music: from word processing to rule-based composition/improvisation 1

Bernard Bel, University of Aix-Marseille

Creativity in Narrative

A Computer Model that Generates Biography-like Narratives . 5
Samer Hassan, Pablo Gervás, Carlos León, Raquel Hervás,
Complutense University, Madrid, Spain

On the Fly Collaborative Story-Telling: Revising Contributions to Match a Shared Partial Story Line . . 13
Pablo Gervás, Universidad Complutense de Madrid, Spain;
Rafael Pérez y Pérez, Ricardo Sosa, National Autonomous University of Mexico

Narrative Inspiration: Using Case Based Problem Solving to Support Emergent Story Generation 21
Ivo Swartjes, Joost Vromen, University of Twente, The Netherlands

Analogy & Language

Evaluating Computer-Generated Analogies . 31
Diarmuid P. O’Donoghue, NUI Maynooth University, Ireland

A Generative Grammar for Pre-Hispanic Production: The Case of El Tajı́n Style . 39
Manuel álvarez Cos, Rafael Pérez y Pérez, Atocha Aliseda,
National Autonomous University of Mexico

Tra-la-Lyrics: An approach to generate text based on rhythm . 47
Hugo Oliveira, Amı́lcar Cardoso, Francisco Câmara Pereira,
University of Coimbra, Portugal

Musical Creativity

A Hybrid System for Automatic Generation of Style-Specific Accompaniment . 57
Ching-Hua Chuan, Elaine Chew, University of Southern California, USA

On the Meaning of Life (in Artificial Life Approaches to Music) . 65
Oliver Bown, Geraint A. Wiggins, Goldsmiths, University of London, UK

Evaluating Cognitive Models of Musical Composition . 73
Marcus T. Pearce, Geraint A. Wiggins, Goldsmiths, University of London, UK

Systematic Evaluation and Improvement of Statistical Models of Harmony . 81
Raymond Whorley, Geraint A. Wiggins, Marcus T. Pearce,
Goldsmiths, University of London, UK

Applied Creative Systems

A practical application of computational humour . 91
Graeme Ritchie, University of Aberdeen, UK;
Ruli Manurung, Helen Pain, University of Edinburgh, UK;
Annalu Waller, Rolf Black, Dave OMara, University of Dundee, UK

Automatizing Two Creative Functions for Advertising . 99
Carlo Strapparava, Alesandro Valitutti, Oliviero Stock, ITC-irst, Italy

Computational Creativity 2007

iii

Frameworks for Creativity

Algorithmic Information Theory and Novelty Generation . 109
Simon McGregor, University of Sussex, UK

How Thinking Inside the Box can become Thinking Outside the Box . 113
Chris Thornton, University of Sussex, UK

Minimal creativity, evaluation and fractal pattern discrimination . 121
Jon Bird, Dustin Stokes, University of Sussex, UK

Creative Ecosystems . 129
Jon McCormack, Monash University, Australia

Towards a General Framework for Program Generation in Creative Domains . 137
Marc Hull, Simon Colton, Imperial College London, UK

Posters

From DNA to 3D Organic Art Forms - FormGrow Revisited . 147
William Latham, Miki Shaw, Stephen Todd, Frédédric Fol Leymarie,
Goldsmiths, University of London, UK

Towards Creative Visual Expression in Virtual Humans . 148
Celso de Melo, Ana Paiva, Technical University of Lisbon, Portugal

Computational Creativity 2007

iv

Keynote

Text representation of music: from word processing to rule-based
composition/improvisation

Bernard Bel, University of Aix-Marseille
The Bol Processor project originated in 1980 as a word processor facilitating the transcription of quasi-
onomatopoeic syllables used as an oral notation system for Indian drumming. It grew up as an expert
system (BP1) mimicking the ability to compose variations on a musical theme or assess their acceptability.
Pattern grammars (a subset of type-2 formal grammars) proved appropriate for modelling the musical
system under study. A stochastic learning device was implemented to infer weights from sets of examples
accepted by the grammar, with the effect of enhancing the aesthetic quality of productions. None the
less, field work revealed limitations inherent to the expert system approach when it comes to modelling
sophisticated human improvisation skills.

In 1989 a numeric-symbolic learning device (QAVAID) was implemented in Prolog II for inferring
grammars from examples. However, it has never been used in fieldwork because of its slow operation on
portable computers of that time.

The next implementation of Bol Processor (BP2) addressed the issue of music composition and impro-
visation in the MIDI and Csound environments of electronic music. A new challenge was to deal with su-
perimposed sequences of events (polyphony) within the framework of text-oriented rewriting systems. This
was achieved by means of polymetric representation. Minimal descriptions of polyphonic/polyrhythmic
structures may be “expanded” by the system to produce arbitrarily complex musical scores. This represen-
tation makes it possible to produce sophisticated time-patterns from information comprehensively imbed-
ded in compositional rules, thereby maintaining the consistency of interpretation. This is a major discovery
for computer music, as “human-like” phrasing is no longer achieved by randomness nor “interpretation
rules”.

Producing the actual performance requires additional information which the Bol Processor encapsulates
in metrical/topological properties of “sound-object prototypes”. A time-setting algorithm modifies sound-
objects taking into account physical timing and their adjacent sound-objects, much in a similar way human
speakers modify the articulatory properties of speech sounds with respect to the speaking rate and influence
of adjacent segments (coarticulation).

Many composers and music teachers support the Bol Processor approach because of its underlying
paradigm of text representation, i.e. “composing with pen and paper”. It found its way long before the
invention of markup languages, at a time only graphic interfaces were expected to capture the sophistication
of compositional processes.

BP2 is currently implemented for MacOS 9 and MacOS X. The project has been open-sourced by
Sourceforge at http://sourceforge.net/projects/bolprocessor/ with the help of An-
thony Kozar.

Bernard Bel is a computer scientist with background in electronics. In 1979 he started collaborating with
anthropologists, musicologists and musicians on a scientific study of North Indian melodic and rhythmic
systems. In 1981 he built the first accurate real-time melodic movement analyser (MMA) for the analysis
of raga music. In 1986 he joined the French National Centre for Scientific Research (CNRS) in Marseille
to continue a research on the rule-based modelling of training methods in traditional Indian drumming. He
studied artificial intelligence under Alain Colmerauer and graduated with a PhD in theoretical computer
science in 1990. Between 1994 an 1998, Bel was deputed to CENTRE DE SCIENCES HUMAINES (CSH,
New Delhi) to carry on projects in the fields of computational musicology and social-cultural anthropology.
He displaced his focus to “innovative” music forms: different ways of associating musical experience with
information technology, and questioning the usual modernity/tradition dichotomy outside Western urban
culture. In 1998 he joined LABORATOIRE PAROLE ET LANGAGE (CNRS, Aix-en-Provence) as a
member of a team specialised in speech prosody and formal representations of language. Together with
colleagues at CNRS he created the Speech Prosody Special Interest Group (SproSIG) under the banner of
the International Speech Communication Association (ISCA).

Computational Creativity 2007

1

Computational Creativity 2007

2

Session 1

Creativity in Narrative

Computational Creativity 2007

3

Computational Creativity 2007

4

A Computer Model that Generates Biography-like Narratives

Samer Hassan1, Carlos León2, Pablo Gervás3, Raquel Hervás4
Universidad Complutense de Madrid

Departamento de Sistemas Informáticos y Programación
1samer@fdi.ucm.es,2cleon@fdi.ucm.es,

3pgervas@sip.ucm.es,4raquelhb@fdi.ucm.es

Abstract
This paper presents an initial decomposition of the pro-
cess of creative storytelling into subtasks that are relevant
for studying where and how creativity plays a role from
a computational point of view. Five basic subtasks are
identified: building a world to act as setting for the story
(including characters, locations, possible actions), gener-
ating a set of events that take place in that world, selecting
from that set of events those that are worth telling, iden-
tifying a particular sequence in which to tell them, and
finding appropriate linguistic realizations for each event
in that sequence. To test the model, an initial prototype is
presented that operates on logs generated artificially by a
social simulation built by a multiagent system. A second
module addresses the task of generating a textual narra-
tive for a given log. Examples of system input and output
are presented, and their relative merits are discussed. The
final section discusses future lines of work that may be
worth exploring.

Keywords: Storytelling, emergent creativity, social
multiagent systems, natural language generation.

1 Introduction
Storytelling is an intellectual activity that is crucial to un-
derstand the way humans perceive the world, understand
it, and communicate with one another concerning their
own experience of it. As for other areas of cognition
closely related with the human language faculty, research
in this area has drawn interest from a very early stage,
but actual progress has long been delayed by the inherent
difficulty and complexity of the phenomena that require
modelling. The general circumstances have not changed
significantly, in the sense that adequate modelling of the
human storytelling capacity is still a far off research goal.
However, recent advances in multiagent systems and nat-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

ural language generation have provided a set of tools that,
properly integrated, can be used to build a simple model of
the various subtasks involved in elementary storytelling.

An important obstacle on the road to achieving use-
ful models of human storytelling from a computational
point of view has been the lack of interaction between re-
searchers addressing this problem from the different fields
of artificial intelligence and literary studies. Recent joint
efforts have started to establish a set of common assump-
tions, starting with the identification of a certain consen-
sus on basic terminology and the identification of the set
of subtasks involved in the broad general activity that is
usually referred to as storytelling. The work of Gervás
et al. (2006) distinguishes between several process that are
involved in the generic process of building a story from
scratch: creating a world, creating a story, and telling a
story. In the past - as discussed by Callaway and Lester
(2001) -, very little effort has been devoted to model com-
putationally the task of creating a world, most efforts un-
der the label of storytelling were concerned with creating
a story, and only in the recent past has the task of actually
telling a story as text been addressed.

This paper presents a decomposition of the process
of creative storytelling into subtasks that are relevant for
studying where and how creativity plays a role from a
computational point of view. Five basic subtasks are iden-
tified: building a world to act as setting for the story (in-
cluding characters, locations and possible actions), gener-
ating a set of events that take place in that world, selecting
from that set of events those that are worth telling, iden-
tifying a particular sequence in which to tell them, and
finding appropriate linguistic realizations for each event
in that sequence. To test the model, an initial prototype is
presented that operates on logs generated artificially by a
social simulation built by a multiagent system. This sim-
ulation carries out the task of specifying the initial world
(configuration of the simulation), and provides a log of
events for a large set of characters emulating real life be-
haviour over a certain period of time (generating a set of
events). A second module addresses the task of generat-
ing a textual narrative for a given log. This module car-
ries out content determination (filtering the non-relevant
events out of the total log), discourse planning (organiz-
ing a possibly large set of parallel threads of events into a
linear narrative discourse), and sentence planning and re-
alization (for the time being performed in a crude manner

Computational Creativity 2007

5

to allow readable presentation of the generated material).
Of course, it is possible to create a different framework
for this purpose, considering different stages. In the next
sections we explain how the proposed framework is in-
stantiated.

2 Previous Work
In order to develop this system, we have resorted to previ-
ous work in the fields of natural language generation and
social simulations using multi-agent systems. A brief out-
line of the relevant studies is given in this section.

2.1 Automatic Story Telling

With a single exception (mentioned below in section 2.2),
the label of storytelling systems has been used in the past
mostly to refer to programs capable of creating a story,
in the sense described above. No effort is made to cre-
ate the world in which the story is to take place, and very
rigid methods are employed to render the story in a tex-
tual form. In terms of how they model the creative pro-
cess, Bailey (1999) distinguishes between three different
approaches to automated story generation: author models
- where an attempt is made to model the way a human au-
thor goes about the task of creating a story -, story models -
based on an abstract representation of the story as a struc-
tural (or linguistic artefact) -, and world models - where
generating a story is seen as constructing a world gov-
erned by realistic rules and peopled with characters with
individual goals, and the story arises from recording how
the characters go about achieving their goals.

MINSTREL (Turner, 1994) and MEXICA (Pérez y
Pérez and Sharples, 2001) would be classed as exam-
ples of author models. Systems based on story grammars
(Rumelhart, 1975) fall under the category of story models.
Tale-Spin (Meehan, 1977), the classic Story Generator in-
spired on Aesop’s fables, and recent efforts of story telling
based on planning (Riedl and Young, 2006) are based on
a world model.

A possible explanation of this diversity of approaches
can be found if one considers them as partial approxima-
tions to the overall complexity of the problem. Under this
interpretation, each approach is focusing on a part of the
problem - the decisions required from the author, the form
of the story, the restrictions imposed by the world -, and
simplyfing the whole by omitting the others. Two inter-
esting considerations arise from this hypothesis. ¿From
the point of view of modelling the process, it seems that a
model that takes several of these factors into account may
provide greater representational power, though it may run
the risk of becoming too complex to be computationally
useful. ¿From the point of view of creativity, it raises the
question of whether the perceived creativity of a program
based on a partial model - which is modelling and control-
ling only a subset of the elements in play - arises from the
freedom allowed in the elements that are not being mod-
elled. Evaluation of program results should attempt to es-
tablish whether the elements that produce the impression
of creativity are indeed being modelled by the program.

2.2 Natural Language Generation

Natural language generation is important for a study of
storytelling because it involves both a model of the task
that need to be carried out to generate a valid text - there-
fore partially modelling the activity of an author - and a
model of the story as linguistic artefact - a story model.

Reiter and Dale (2000) define the general process of
text generation as taking place in several stages, during
which the conceptual input is progressively refined by
adding information that will shape the final text. During
the initial stages the concepts and messages that will ap-
pear in the final content are decided and organised into a
specific order and structure (content planning), and partic-
ular ways of describing each concept where it appears in
the discourse plan are selected (referring expression gen-
eration). This results in a version of the discourse plan
where the contents, the structure of the discourse, and the
level of detail of each concept are already fixed. The lexi-
calization stage that follows decides which specific words
and phrases should be chosen to express the domain con-
cepts and relations which appear in the messages. A fi-
nal stage of surface realization assembles all the relevant
pieces into linguistically and typographically correct text.
The tasks of referring expression generation and lexical-
ization are known as sentence planning.

The natural language generation work presented in
this paper is mainly centered around content planning.

The work of Callaway and Lester (2002) stands out
as the most significant effort in the field of natural lan-
guage generation to address the specific challenges posed
by narrative texts. It relies on having an external planner
that defines the outline of the intended story, and it car-
ries out elaborated sentence planning to produce input for
a surface realizer.

2.3 Social systems

The role of social systems in the current research is to pro-
vide a first approximation of a model of the world, which
has been identified as an important ingredient of the sto-
rytelling capability. A multi-agent system (MAS) consists
of a set of autonomous software entities (the agents) that
interact among them and with their environment taking
decitions. The agent paradigm assimilates quite well to
the individual in a social system. With this perspective,
agent-based simulation tools have been developed in re-
cent years to explore the complexity of social dynamics.

The MAS presented in this paper is based on a previ-
ous social simulation by Pavon et al. (2006). In that work,
the agents were developed with several main attributes:
from simple ones such as sex or age, to complex ones, like
for example ideology or educational level. The popula-
tion in the agents’ society also experiments demographic
changes: individuals are subject to some life-cycle pat-
terns. For example, they get married, reproduce and die,
going through several stages where they follow some in-
tentional and behavioural patterns. The agents/individuals
can build and be part of relational groups with other
agents: they can communicate with other close agents,
leading to friendship relationships determined by the rate
of similarity. Or, on the other hand, they can build family

Computational Creativity 2007

6

nuclei as children are born close to their parents.

3 Story Generation
Each of the stages outlined earlier is described in more
detail.

3.1 The Social Simulation: Creating the World and
the Story

Based on the ideas mentioned, several changes to the orig-
inal MAS from Pavon et al. (2006) have to be made in the
perspective of execution to be able to generate “life logs”
of the individuals, which will be the basis for the texts de-
scribing the storyline. It is necessary to shift the point of
view from trends data acquisition to vital biographies. We
do not need numerical data, but semantic content that can
be interpreted by the rules as we interpret them, because
we want the story generation to be as close as possible
to what humans might have done faced with similar sets
of events. In this framework, we adapted the MAS for a
Fantasy Medieval World, as it is described in León et al.
(2007). Thus, for every single individual we have a Name
and Last Name. Moreover, this Last Name is inherited:
this will be useful for telling the stories of lineages, and
for personal events. And every agent has a race, so they
can be elves, humans, dwarfs... For each agent there is
now a random possibility of dying, allowing the possibil-
ity that we can relate this early death to the betrayal of a
friend, poisoning by a wife, a mysterious accident... This
cause-consequence link is very simply implemented, only
based in the last event happenned, but it should be im-
proved with a “memory” of the agent that would lead its
future actions (for ex. with a BDI arhitecture).

Following the cited objective of emulating life be-
haviours, the MAS presented here introduces context de-
pendant relationships and life events: usual life events
were not exciting enough to build a fantasy adventure.
And so, an individual can have friends and enemies.
Along his path, he can get married and have children, but
he also can, randomly, suffer several spells (loss of mem-
ory, fireball or even change of sex!), kill horrible monsters
(ogres, dragons), get lost in mazes or dark forests, find
treasures and magic objects in dangerous dungeons,... In
this way we can build a really amazing (and sometimes
weird) story, with several characters that evolve and inter-
act among them.

At the end of simulation, this collection of events, to-
gether with the agents’ characteristics, is exported to a
context-independent XML file. This file will be imported
by the content planning module that will continue with the
process of generating a story from the lives of the most in-
teresting of these agents.

Here we present an example of the output of the social
simulation with the important information of each agent.
The data for every agent is listed: the initial ones, together
with the next generations that appear during the simula-
tion. Here we explain briefly the one corresponding to
the individual that will be selected as star of our example
story. The data for each character is divided in two main
sections. The first one (Table 1) corresponds to the char-

acteristics of the agent. Each attribute of the character has
two parameters, expressed as attributes: its ID (identifier
of the attribute) and its Value. The value of these keys is,
of course, context-dependent: they represent aspects like
its race or how religious the character is.

Id Name Last name Race Sex
i212 Jeanine Avery human female

Table 1: Attributes of a character

The second main section (Table 2) is the collection of
life events, associated with the time in which they took
place. As in the previous sections, attributes are context-
free, but values of these attributes depend on the context.
Thus, we can read in the full log that in the year 515, the
human Jeanine Avery suffered a spell that transformed her
into a frog. Or, analyzing the chain of events, we can see
that the impossible love of her youth was, after she grew to
be an adult, her formal couple, giving her many children
and living happily... at least for some years.

Id Time Action Param
e9 515 spelled frog
e10 515 impossible love i229
...
e14 526 couple i229
e15 526 child i258

Table 2: Events of a character

3.2 A New Rule-Based Story Planning System

The work presented in this paper is a new version of a pre-
vious content planning story generation system described
in León et al. (2007). The input for this program is a
description of a set of characters with their facts and at-
tributes, and the output is a filtered and ordered set of
those elements, in such a way that the final generated dis-
course is intended to be much more legible for a human
than the original set of facts. The design is oriented to
generate stories for a group of agents coexisting and cre-
ating relations between them, in this way emulating the
story of a real society, with possible emerging sub-stories
that can be narrated.

The previous version of the content planning system
executed a ruled based algorithm to describe the story of
one of the agents, telling about some important facts of
some of the most important agents or characters which
had any relation with the protagonist. Although the re-
sults were somehow interesting, we have carried out a new
version able to generate more complex stories, not only
focusing on the main character, but also on other agents.
With this approach, new narrative structures can be gen-
erated, like simple conversations and changes of narrative
focus.

3.2.1 Interest

The content planning system uses a rule based algorithm.
The rules that directed content determination in the first
version of this program were based on some numerical
factors that added information to the characters, making it

Computational Creativity 2007

7

easier to choose which of them should be the protagonist.
This new version, however, reduces the role of these val-
ues, and only computes and uses one of them, the interest.
The rest of the information needed for creating an ordered
an filtered story is included in the algorithm using more
powerful rules and, as we explain later, a focus.

The interest (I(X)) is the importance that we assign
to a character because of their facts. We have a table that
gives more or less interest to each of the possible facts. Of
course, these values are fully domain dependent. Formula
1 shows how to compute this factor:

I(X) =
n∑

i=1

fi · h (X, i) (1)

where fi is the interest that we assign by hand for the
fact i, X is the character, and h(X, i) is the weight for the
appearance of i in the life of X . The value of h is calcu-
lated with the type of i (what kind of fact it is) and with
the attributes of X (if it is an elf, or an orc). There are, of
course, some other ways of assigning this interest. How-
ever, doing it in this way we can easily put many informa-
tion of the domain about the meaning and the importance
of each fact.

3.2.2 Focus on the Characters

Interest is not enough for creating a good story. We also
add some other rules to perform discourse planning, based
on templates for creating an ordered story and telling sto-
ries about several characters. The rules we have chosen
model in a very simple way the mental rules humans use
to apply on these kind of creative tasks. However, as ex-
plained before, the previous version was only able to gen-
erate a story for a single character. We have now a differ-
ent set of rules for the system: the focus.

The focus establishes which character is the main one
at some stage of the story. We can consider it as a light
that illuminates a particular actor in a scene. When some
character has the focus, the rules generate parts of its story,
as if the attention of the public centred only on a particular
actor in a play. The focus can be also be understood as
a “token” that is passed between the characters, and the
character that possesses this “token” can add some of their
facts, in the order that it decides based on some rules.

One of the most important aspects of the focus is when
to change it. If the focus is only established on a single
character, the system will never be able to generate a story
of more than one of them. So we have to add some rules
that decide when to change the focus, and which charac-
ter should be the next “main actor”. These rules are intro-
duced in the next section.

3.2.3 Rules

The rules that govern the behaviour of the system are
based on the explicit information stored in the interest.
These rules first decide which character is the main one,
choosing the character with higher interest. The story of
this character will direct the main thread of the narration.
So once we have chosen this character, we give it the
focus. Then the character applies some rules to decide
which facts are going to be added to the structure of the

story. These rules are based on the interest of the facts (we
only tell the most important aspects of an agent life) and
the time (usually, ordering facts in a time sequence). In
this way we create an ordering between the facts, creating
the discourse.

When the rules for narrating a part of the life of a char-
acter decide to add to the final story a fact related to an-
other character, we change the focus to that new character.
For example, if a relation with high interest (like an im-
portant enemy) appears in the life of some character, we
change the focus to that enemy, trying to show the most
relevant facts about him. However, in the application of
the rules along the generation process, we always keep
the information of which character is the protagonist, to
be able to change the focus back to him/her.

3.3 Sentence Planning

The final generation of the story is not only a nice way
of showing the results. It can make the discourse interest-
ing or boring, even if the order of the facts resulting from
discourse planning is good or bad, respectively. Thus, we
cannot ignore this step if we want to evaluate the gener-
ated content. It is not the same to say “Elrond was an
Elf. He had a daughter called Arwen. Elrond was friend
of Aragorn.”, as to say “Elrond the Elf, father of Arwen,
was friend of Aragorn the King”. The final form of sen-
tences not only gives beauty to the text, but may also con-
vey information not actually present in the data structure.
We can infer, in the second sentence, that Elrond is some-
body important, as Arwen, and Aragorn is going to play a
main role in the story. This knowledge is not contained in
the first sentence. To achieve computational modelling of
these characteristics is currently beyond the scope of this
paper, but we intend to address it in future work.

Two different stages can be clearly differentiated dur-
ing sentence planning: referring expression generation
and lexicalization. In the work presented in this paper
both of them have been treated in a simple way, with the
intention of providing a first approximation to solve the
problem while identifying the kind of decisions that must
be taken in the future.

For the generation of references we have implemented
a solution where all occurrences of the concepts men-
tioned are treated as definite references, and without using
pronouns. Even when these references are quite simple, it
is necessary to handle information about their number -
singular or plural - and whether they are proper nouns or
not. This information is stored in an elementary knowl-
edge base containing the required information for each of
the concepts appearing in the discourse generated by the
content planning stage.

During the lexicalization stage two distinct tasks are
addressed. On the one hand, for each reference appearing
in the text a lexical tag must be chosen. For the moment
the bare name of the concept is used, but in the future the
system would work with a dictionary where every concept
has assigned one or more lexical tags that are appropri-
ate to express the meaning of the reference. On the other
hand, for each action that is present in the discourse not
only the lexical tag corresponding to the verb is required,

Computational Creativity 2007

8

but also the structure of the resulting sentence. For exam-
ple, a suitable sentence for the conceptual representation
of the action ‘to be born’ would be in passive voice and
usually accompanied by a locative or temporal adjunct, as
in “She was born in Rivendel” or “She was born in 1980”.
This information is stored in a syntactic knowledge base,
where each kind of sentence is associated with the type of
appropriate adjunct that can accompany it. In the current
implementation the set of possible verbs is quite reduced,
as well as the adjuncts corresponding to them.

3.4 An Example

Now, we show a real example of our application. The
multi-agent system is capable of running parametrized
simulations, changing the number of characters, proba-
bilities of the facts, years of simulation, and all other at-
tributes of the system. Once executed, the system gener-
ates logs in XML.

At this stage, the story generation application reads the
resulting XML file, and outputs a text. This example is the
result of a simulation of the life of 200 initial characters
and their descendants over a time span of 80 years. The
system has inferred who is the most important character,
and it produces the following rendition of her mortal life:

Jeanine Avery was born in 520. Jeanine Avery
was saved by the priest. Jeanine Avery killed
the ogre. Jeanine Avery was involved in the bat-
tle. Jeanine Avery was enchanted with the mar-
vellous spell of the frog. Jeanine Avery killed
the dragon. Jeanine Avery was lost in the for-
est. Jeanine Avery met Luisa Brandagamba.
Luisa Brandagamba was born in 529. Luisa
Brandagamba met Jeanine Avery. Jeanine Av-
ery killed the ogre. Jeanine Avery fell desper-
ately in love with Bobbie Beasttongue. Jea-
nine Avery inherited the castle. Jeanine Avery
met Pogor Brandagamba. Pogor Brandagamba
was born in 529. Pogor Brandagamba killed
the ogre. Pogor Brandagamba met Jeanine Av-
ery. Jeanine Avery grew up. Jeanine Avery fell
desperately in love with Bobbie Beasttongue.
Jeanine Avery met Haurk Avery. Haurk Av-
ery was born in 542. Haurk Avery found the
magic sword. Haurk Avery met Jeanine Avery.
Jeanine Avery was lost in the labyrinth. Jea-
nine Avery found the treasure. Jeanine Avery
was enchanted with the marvellous spell of the
memory. Jeanine Avery was enchanted with the
marvellous spell of the frog. Jeanine Avery was
involved in the battle. Jeanine Avery killed the
ogre. Jeanine Avery killed the dragon. Jeanine
Avery was involved in the battle. Jeanine Avery
was lost in the forest. Jeanine Avery found the
treasure. Jeanine Avery killed the dragon. Jea-
nine Avery was betrayed and killed by Morrain
Avery.

4 Discussion
An important advantage of the proposed model is that
it allows separate discussion of the degree of creativity
achieved at each stage, and considerations of whether the
corresponding creativity can be attributed to the program,
the programmer, or randomness.

4.1 World Construction: How Creative is it?

Even though we have defined a full context where the ac-
tion takes place, there still remains lot of work to do for
building the world. This MAS can be configured in many
ways that lead to completely different results. But this
fact does not mean that there is a way of predicting the
result: as a social system, its nature is non-deterministic.
Although we can partly control the agents’ behaviour, for
the most part it remains uncontrolled. Only through eval-
uation and statistics can wededuce which configuration is
the most convenient to our aim.

To achieve this, the system was tested changing the
values of the parameters and analyzing the results ob-
tained for each configuration. Initial testing was directed
to find the base parameters for other testing processes. It
revealed that hundreds of individuals were needed to pro-
vide enough interactions to extract emergent behaviour
and to express enough complexity, following logical rea-
soning. We found too that if we wanted to tell the life
story of a person, we needed to know at least a number
of decades of its life events. On the other hand, we can
not use thousands of agents due to efficiency issues (the
analysis of a log of hundred of MB is costly in computa-
tional terms). Thus, we left constant the size of the initial
population (200) and the time of simulation (50 years) for
all the configurations tested (together with other minor pa-
rameters like the space size or those dealing with graphical
presentation), and only the demographical parameters are
modified. We chose 200 agents because it is a number that
the system can handle in reasonable periods of time, but
big enough to produce good results.

We say a system is “stable” if it returns a similar out-
put in different executions with the same configuration.
New evaluations with those fixed parameters revealed that
the stability of the social simulation system was critically
affected by the parameters chosen. Furthermore, we found
that the same parameters were dramatically influencing
the diversity of the population. And diversity is the main
path to find creativity.

So, we identified these critical parameters as:

• Mean of children per couple: a simple number that
specifies the mean of the normal distribution that de-
fine how many children a couple have. It has two
typical parameters, corresponding to the means in a
developed country (2) and in a typical African one
(5).

• With/without initial kids: a complex parameter that
reflects the amount of kids in the initial population.
In the original sociological MAS there were no kids
initially, because all the data of the agents were im-
ported from surveys... and kids do not complete sur-
veys. We can force the appearance of kids reducing

Computational Creativity 2007

9

the ages of all the agents of the initial population.

The importance of both parameters can be easily ex-
plained. About the first one, we can say that if every
couple has more children, there will be more interactions,
more friends, more complexity. If we add the fact that
sons and daughters are born close to their parents forming
family nuclei, the system dynamics tend to self-organize
in clusters of friends and families concentrated in the
space. Newly born agents grow in a rich environment full
of people, so they can generate lots of events and easily
find a spouse, better than more isolated ones. Evolution
does the rest. After decades of simulation, only the clus-
ters survive and grow.

On the subject of whether to have children in the initial
population or not we can say that, without them, the size
of the population tends to get lower and lower with time,
because there is not a new generation that substitutes the
oldest ones that are dying. And moreover: the characters
with an “interesting life” are the ones that have enough
time to do lot of “interesting things”... If lot of them begin
the simulation with 45 years or more, and they tend to die
around 65, they do not have much time to “be heroic”.
The same could be said if an agent is born 5 years before
the end of simulation: its probabilities to be “interesting”
are very rare.

We can define four different configurations based
on these two parameters: Without/2, Without/5, With/2,
With/5. We will analyze some evaluation results of them
as shown in the following figures and explanations. These
figures reflect the analysis of dozens of executions and
tests.

In the four configurations, we will observe the total
number of individuals simulated (the 200 initial ones plus
the born ones) and the size of the family (average and
maximum, minimum gives no information). The initial
people have no parents and no initial relationships be-
tween them.

In Without/2 the number of individuals has a very high
stability, with variations around the 5% between execu-
tions. Because to both critical parameters tend to reduce
the population there are only a few births. Thus, average
size of family is very close to the minimum. In Without/5,
with each parameter pushing in a different direction, we
can see that the “Without” one is stronger: the popula-
tion still decreases. The family size doubles and the max-
imums are incredibly higher: three times the Without/2
(around 15).

In With/2, again we can see how “With” prevails: the
population increases, but only around a 45%. Here we
appreciate a logical increase of the average family size
(around 3.0), but less than it could be expected: although
here we have a rise of population, it is because we avoid
deaths, not because children. We can realize the differ-
ence better looking at maximum family size, that here
reaches only 10. In With/5, we have what we could ex-
pect: an incredible grow of the population size. With
crazy executions always completely different (with dif-
ferences that reach the 200 births), it results an average
growth of 275%, an average family of 6.2 and a maxi-
mum family size of 18. Now, none of these facts could
surprise us. The unstable executions of With/5 are shown

in Figure 1 compared with the stability of others.

Figure 1: Comparison between configurations, attending
to the number of simulated agents

After reviewing all the possibilities, the chosen one
would be the one that has a good amount of interactions
together with lot of diversity in the population and a rea-
sonable family size.

Dealing with races, we can see how the micro-
decisions (taken by the agent) determine the total evolu-
tion in a kind of butterfly-effect (chaotic). We force the
initial population to have approximately 20% of each one
of the five races. But it does not matter which configura-
tion we choose: the percentage will never remain stable.
The reason is simple: each agent becomes friend or enemy
of someone depending on the similarity between them.
And when an agent has to choose its spouse, it chooses
the most similar of its friends (some other minor restric-
tions are included). But an elf and an orc have nothing in
common: they dislike each other, and will be extremely
difficult for them to marry. Because of that, the number of
orcs tends to decrease (if one is in a environment without
orcs, he will not find a couple nor have children). Humans
can easily cross with other races (according with fantasy
middle-age stories), so their adaptability allows them to
increase their number more than other races. This way we
are modelling the fantastic world, and it makes sense: we
will not find strange when the human Aragorn hates orcs
and gets married with the elf Arwen. Figure 2 reflects this
explanation graphically.

Figure 2: Percentage of races depending on the configura-
tion

Even though we have reviewed the main possibili-
ties of the demographical model types, we cannot decide
which one would be the best one for our tale. This is a
task of the next step: story building.

Computational Creativity 2007

10

4.2 Story Construction: How Creative is it?

We have a complete world, with a demographical evolu-
tion, that serves as context. Now we focus on the facts
to be told in the story, that have two main characteristics:
they have to be “interesting” (our characters are adventur-
ers, not trees that only know how to grow, reproduce and
die) and they have to be restricted to this world (Aragorn
will not have a helicopter). Because of the first character-
istic, we chose to include the random context events (as
it has been described) and the relationship of “enemies”.
Because of the 2nd one, we chose the events carefully, ap-
plying our knowledge of the fantasy context. In this way
we can analyze, as was done in the previous subsection,
the friends, enemies and number of events of each con-
figuration, from the “interest” point of view. Maximums
are particularly interesting because they will reflect the
“heroic” characters, that will do more things than usual,
and so will be more attractive for an exciting story.

For Without/2, with not much population, the interac-
tions between agents are not significant. This simulation
is dramatically poor: an average of not even 4 friends per
individual and maximums of 10 reveals it. With many dy-
ing in the beginning, the average number of events does
not grow more than 20... Although this amount is dou-
bled by the “heroes”, it is too poor to be considered. We
should have much more “interesting” ones to analyze, so
we can decide about a really amazing one, or about cross-
ing two interesting and connected stories. For Without/5
we increased the amount of friends/enemies by a 50%, but
still not enough: 5 friends and 2 enemies for a whole life
is not what we are expecting. The events have nearly no
increase, and the maximum is just a 15% higher.

In With/2 we can see, at last, good averages. The
amounts of friends/enemies have doubled respect to With-
out/5, and in the special characters we can see dozens of
friends/enemies. Besides, a big increase in the number of
events is observed . This configuration could be selected
for our purposes. With/5, as in the other subsection, gives
crazy results. We can see a huge increase in the number of
friends/enemies (the maximum, with 62, doubles With/2!)
and, even though the average of events did not change a
lot, the maximum is incredibly high: an average maxi-
mum of 125 means that the amount of heroic characters is
very significant. Figure 3 shows the main event results.

Figure 3: Comparison between configurations, attending
to the number of events per agent

A note about efficiency: even though all the configura-
tions ran with no problems of time or memory, the With/5,
due to its huge amount of agents and interactions, is sig-

nificantly slower than the others. Moreover, it outputs a
XML log much bigger than the other configurations. At-
tending to the whole discussion and reviewing the pos-
sibilities commented, the chosen configuration will have
a good amount of interactions, together with the diver-
sity necessary for finding many “heroes”. The With/2 and
With/5 are good candidates. Choosing between them de-
pends only on the length and complexity of the story that
wants to be told and efficiency issues of the other modules.

A good story must explain why a fact occurs in the
story. Only with random events this is, of course, not pos-
sible (there is no explaining possible for a random event).
We can see, in the example (3.4), that in the story there
are some gaps. These gaps are relative to the randomness
of the system. This is an important issue that has to be
improved.

4.3 Content Planning: How Creative is it?

To obtain a creative content planning system is definitely
not an easy task. A truly creative program able to emulate
human creativity should have mechanisms for understand-
ing the source logs, creating an intention for the discourse
plan, and performing some operations for threading the
final story. Of course, nowadays this a very ambitious
project, and we have to give little steps towards this ideal
system.

In this paper we have presented some progress. As
explained before, textual content generation from the facts
of the story are generated with rules. This set of rules
can be more or less large and complex, but in this kind of
systems they will always direct the generation, and thus
the quality and the creativity of the resulting text.

In this sense, the creativity relies on the quality of the
rules, which is directly linked to the creativity of the hu-
man responsible for writing them. In this way, we can
say that the human puts the creativity into the system, and
the system only reproduces the information written by the
human.

This information is not only explicitly deposited on
the system with the rules, but also with the interest and
the focus. As explained before, interest is stored in a ta-
ble created by a human, and the focus traffic is guided by
rules. Again, the creativity of the content planner is de-
pendent on the human creativity. It is important to note
that in this version the rules that govern focus changing
are not very good, and the focus swings too much from
one character to another. This has to be improved.

4.4 Sentence Planning: How Creative is it?

For the moment the implementation of the sentence plan-
ning stages of the process are systematic, and therefore
they can not be considered creative. Certain improve-
ments are possible which may result in a higher quality
of the output texts. However, this improvement in qual-
ity is in truth more related with issues of style than with
creativity.

During the generation of referring expressions some of
the decision processes involved can be improved. For in-
stance, imagine we are referring to a girl about which the
system knows that is pretty and is daughter of a king. If

Computational Creativity 2007

11

the references to this concept are directly translated from
the available information we would obtain sentences such
as “The girl was pretty. She was the daughter of a king”.
However, the final text would be more natural if it is ca-
pable of inferring that the girl is a princess and referring
to her as a princess in the rest of the text. This involves
providing the system with a certain amount of knowledge
that it can use to simulate more inteligent behaviour.

Also in the lexicalization tasks there is space for im-
provement. When choosing the lexical tag to use for a
concept, it seems common that the dictionary had more
than one word for each of these concepts. Depending on
the previous appearances of the concept, the system can
choose between synonyms or hypernyms using heuristics
about the style of the discourse in a specific moment, or
the emotion that the text is trying to transmit.

5 Conclusions
We have presented a system where interactions between
agents over a long period of time can be told in natural
language automatically.

We have shown a particular way of generating the sto-
ries, based on rules. We have explained a three-step pro-
cess for performing this task, and we have verified that for
discourse planning, the rule-system is very dependent on
the domain, and the desired type of story.

The results of the system are less impressive - when
rendered in a readable text format - than they might have
been if the system included an elaborate sentence planning
module. The current version is just a skeleton implemen-
tation that lets down an otherwise acceptably selected and
planned discourse.

The division of story telling into five tasks is envis-
aged as a generic analysis of the process, in the sense that
it should be applicable to all storytelling systems. This
does not apply to the sequential manner in which they
are carried out in the prototype described. For different
systems, the results of some of these tasks may be pro-
vided as input (for instance, descriptions of the world are
given to story telling systems based on planning, or dis-
course plans provided to Callaway’s StoryBook system).
A different alternative is to avoid altogether explicit mod-
eling of some of these intermediate results. For instance,
the creation of the story world may not take place explic-
itly within the system, and simply be left to emerge in the
reader’s mind from the sequence of events that is built by
the system. This does not make the proposed model less
valid. Whether a particular task is modeled explicitly in
any given system, outsourced to the user (or a different
system), or left to emerge implicitly from the results of
other tasks, it remains true that a story (and hence a story
telling system) may/should be evaluated at these five dif-
ferent levels.

Acknowledgements
This work is partially supported by the Spanish Ministry
of Education and Science project TIN2006-14433-C02-
01, and research group grant UCM-CAM-910494, jointly
funded by Universidad Complutense de Madrid and the

Comunidad Autónoma de Madrid (Dirección General de
Universidades e Investigación).

References
Bailey, P. (1999). Searching for storiness: Story-

generation from a reader’s perspective. In Working
Notes of the Narrative Intelligence Symposium, AAAI
Fall Symposium Series., Menlo Park, CA. AAAI Press.

Callaway, C. and Lester, J. (2001). Narrative prose gener-
ation. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, pages 1241–
1248, Seattle, WA.

Callaway, C. B. and Lester, J. C. (2002). Narrative prose
generation. Artif. Intell., 139(2):213–252.

Gervás, P., Lönneker-Rodman, B., Meister, J. C., and
Peinado, F. (2006). Narrative models: Narratology
meets artificial intelligence. In Basili, R. and Lenci,
A., editors, International Conference on Language Re-
sources and Evaluation. Satellite Workshop: Toward
Computational Models of Literary Analysis, pages 44–
51, Genova, Italy.

León, C., Hassan, S., and Gervas, P. (2007). From the
event log of a social simulation to narrative discourse:
Content planning in story generation. In AISB’07, Arti-
ficial and Ambient Intelligence.

Meehan, J. R. (1977). Tale-spin, an interactive program
that writes stories. In Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence, Cam-
bridge, Mass. Morgan Kaufmann.

Pavon, J., Arroyo, M., Hassan, S., and Sansores, C.
(2006). Simulacion de sistemas sociales con agentes
software. In Actas del Campus Multidisciplinar en Per-
cepcion e Inteligencia, CMPI-2006, volume I, pages
389–400.

Pérez y Pérez, R. and Sharples, M. (2001). Mexica: a
computer model of a cognitive account of creative writ-
ing. Journal of Experimental and Theoretical Artificial
Intelligence, 13(2).

Reiter, E. and Dale, R. (2000). Building Natural Language
Generation Systems. Cambridge University Press.

Riedl, M. and Young, R. M. (2006). Story planning as
exploratory creativity. New Generation Computing -
Special Issue on Computational Creativity, 24(3-4).

Rumelhart, D. (1975). Notes on a schema for stories. In
Bobrow, D. G., editor, Representation and Understand-
ing. Studies in Cognitive Science, New York. Academic
Press.

Turner, S. R. (1994). The Creative Process: A Computer
Model of Storytelling. Lawrence Erlbaum, Hillsdale,
NJ.

Computational Creativity 2007

12

On the Fly Collaborative Story-Telling: Revising Contributions to Match a
Shared Partial Story Line

Pablo Gervás
Universidad Complutense de Madrid

28040 Madrid, Spain
pgervas@sip.ucm.es

Rafael Ṕerez y Ṕerez Ricardo Sosa Christian Lemaitre
Universidad Aut́onoma Metropolitana, (Cuajimalpa)

México D.F., Ḿexico
rperez@correo.cua.uam.mx
rsosa@correo.cua.uam.mx

clemaitre@correo.cua.uam.mx

Abstract

Computational improvisation is a challenging topic. It in-
volves collaborative creativity, the modelling of interest-
ing cognitive process like those needed to keep the coher-
ence and interestingness of an emergent story, the ability
to foresee possible interesting directions that the impro-
visation might take, etc. In this paper we present an ar-
chitecture for story-telling improvisation. It is based on
the engagement-reflection computer model for plot gener-
ation. It involves the interplay of two agents in order to
generate a novel, coherent and interesting story. Our pur-
pose is to provide an analysis of the key requirements to
develop a computational improviser and the solutions we
envisage to achieve this goal.

Keywords: Colaborative storytelling, improvisation,
engagement-reflection.

1 Introduction

Improvisation can be defined as the act of creation of a
work or its performance in real time, individually or by
a sequence of contributions by a number of interacting
agents. Improvisation is known to be a type of collabo-
rative creative activity that takes place extemporaneously
with continuously updating preparation but without prior
planning. In improvisation, a combination of planned
and unplanned actions takes place. The contributions of
each improvising actor often follow three basic restric-
tions: they must be consistent with the contributions of
other players, they are expected to result in an interesting
plot that emerges from their interaction with the rest of the
players, and they must be produced by avoiding noticeable
gaps in the run of the scene.

From the viewpoint of computational creativity, this
set up presents a number of interesting questions. On one
hand, the restriction on the quality of the emergent mate-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

rial suggests that some kind of shared intentionality may
be required to drive the production of each actor’s con-
tribution. Actors may be searching for particular effects
when they produce certain contributions. To a certain ex-
tent this may be modeled as some kind of preparation1

activity, during which the actor contemplates possible ef-
fects of his immediate actions and produces his contribu-
tion based on that preparation.

On the other hand, the restriction on overall consis-
tency of the set of contributions implies that actors must
continuously consider the contributions of other players.
A contribution prepared by one player may need to be
revised, altered or even scratched altogether if another
player generates conflicting material before that contribu-
tion is actually executed. The fact that interaction takes
place in sequences without gaps complicates matters fur-
ther, since it precludes the elementary solution of wait-
ing until everybody else’s contribution has finished before
starting to prepare one’s own.

This problem is worth studying both from the point of
view of understanding how humans address it and from
the point of view of devising computational methods for
emulating this behaviour in particular situations. How-
ever, theatrical improvisation involves too many complex
levels of interaction to be modelled successfully in com-
putational terms: a text must emerge from the interaction,
but other ingredients such as diction, gesture, body lan-
guage... play too crucial role to be dispensed with without
compromising the validity of the analysis.

A possible solution is to try to find a simpler problem
that retains the fundamental issues concerning prepara-
tion, revision, emergent quality and real-time interaction,
but has a lower complexity of the material to be consid-
ered. In this paper we put forward a model for on-the-
fly collaborative storytelling that may satisfy these crite-
ria. Two story tellers take turns in advancing a shared
story line. While one contributes, the other one listens.
Because he will be expected to take over as soon as the
speaker stops, he cannot postpone the task of preparation
until the speaker has finished. So he prepares ahead a ten-

1Preparation defined as “to be prepared: to be in a state of
readiness, ready; to be mentally ready, inclined, disposed; to be
in a condition or position to do something” (Oxford English Dic-
tionary, www.oed.com) is used in a more flexible way than the
more definite nature of planning used in the traditional AI liter-
ature.

Computational Creativity 2007

13

tative sketch of his own contribution. Any conflicts arising
with the other story teller’s contribution as it emerges will
force him to revise his prepared contribution.

We believe this model to contain all the elementary de-
tails that puzzle us in theatrical improvisation, while being
restricted to the somewhat simpler task of story genera-
tion, for which a number of computational solutions al-
ready exist. In this paper we propose an architecture for
engaging two such existing computational programs for
story telling - in truth, two copies of the same solution,
possibly running under different configurations - in an ex-
ercise of on-the-fly collaborative storytelling. We discuss
the restrictions that the specification imposes on the story
tellers, and we consider how their collaborative creative
tasks can be modelled.

Improvisation has been part of theatre performance for
centuries; it is well documented that performers of the
Commedia dell’artewere excellent improvisers2. During
the first half of the twentieth century in Chicago, Viola
Spolin introduced the theatre games based on improvisa-
tion; since then, the number of improvisation practices has
increased. We are interested in furthering our understand-
ing of the relation between improvisation and creativity
within computational settings. Some improvisation issues
that we identify as key elements for this research include:

• Criteria must be established to evaluate the quality of
improvisations and the means to validate this mea-
sure.

• Coherence must be maintained during an improvi-
sation. This is an important challenge since actors
cannot modify what has already been told.

• Actors have different knowledge and experiences and
therefore different ways of interpreting the world.

2 Previous Work

The work described in this paper involves story telling,
improvisation, and interaction between programs that can
roughly be classed as agents in the sense that they commu-
nicate and exchange data in a colaborative effort to pro-
duce a common result. For each of these elements, a brief
summary of the relevant background is provided in this
section.

2.1 Automatic Story Telling

Of the various approaches to automated story telling de-
scribed by Bailey (1999), those based on modelling the
processes that a human author follows in generating a
story are most interesting from the point of view of mod-
eling creative endeavour from a computational point of
view. The work of Turner (1994) on the MINSTREL
system was pioneering in the sense that earlier attempts
at automated storytelling - such as the work of Meehan
(1977) or Rumelhart (1975) - focused more on modeling
the world about which stories are told or the actual form
of the story as a linguistic artefact, respectively. Although

2This article was originally published in Bellinger (1927)

several research efforts have addressed storytelling in dif-
ferent ways since then, it is not until the work of Pérez y
Pérez and Sharples (2001) on the MEXICA system that
modelling the actual processes of creative story composi-
tion has been addressed especifically.

The work presented in this paper presents an extension
of a similar analysis to the modifications to the creative
process induced by a colaborative improvisational setting.

2.2 Improvisation as Collaborative Story-Telling

The on-line Webster dictionary defines improvisation as
“an unplanned expedient” or “a performance given with-
out planning or preparation”. It is clear that improvisation
is something different from planning. However, Moraes
and da Rocha Costa (2002) claim that planning can be un-
derstood as improvisation under external constraints. In
their model, there is a “director” who is responsible for
providing the actors with a full script of the story to repre-
sent; so, the actors’ job consists in finding ways of reach-
ing the goals imposed by the script. This has been, in
fact, a research line of hierarchical planning where plan-
ning and acting can be interleaved. By contrast, we con-
sider improvisation a collective activity where the plot (or
script) emerges as result of the interaction between agents.

Philip Agre - in Agre and Chapman (1987); Agre
(1997) - has characterized computational improvisation
as the continual dependence of an agent’s action upon
its circumstances. This proposal interprets improvisation
as a running argument that an agent continually updates
among various alternatives. These options together form
a dynamic argument structure which undergoes constant
change as a result of agent activity and its impact on the
world, including other agents. Under this approach, the
emerging behavior is an considered as epiphenomenon of
the interactions between agents and their world. There are
a few basic constraints mentioned in the literature of the-
atre performance that a good improvisation must fulfill.
Following Trastoy (2005), some of these constraints are
listed below.

Improvisation is a sort of story-telling and the whole
performance must have some basic structure such as in-
troduction to the problem, development and resolution.

Nothing should be agreed in advance within the group
of actors. The public might suggest a topic to be devel-
oped during improvisation and actors can take some sec-
onds to define basic issues about roles and other matters,
but nothing about the plan of the story.

The dynamic of the story is driven by conflicts. The
story is in fact a collective search for solutions to those
conflicts. During the unravelling of the plot new conflicts
might arise. The challenge for actors is to keep the coher-
ence and interestingness of a dynamic and unpredictable
story, finishing with a good synthesis of the different prob-
lems.

The role of the director of an improvisation troupe is
quite different from the role of the director in traditional
theatre. The former is responsible for the general setting
of the performance while the latter controls every aspect
of the play.

Thus, an improvisation performance is a sort of collec-

Computational Creativity 2007

14

tive story-telling game where the golden rule is that no ac-
tor must block the story initiated by its predecessor. That
is, he can never say something like “No, what he said is
not true, the truth is...” Besides that rule, actors are freeto
generate the next segment of the story as they want.

Our approach to computer improvisation as story-
telling incorporates some of the main characteristics of the
improvisation troupes. We envision a set of agents who
may play specific roles in the story. The role of the direc-
tor is played by the programmer who defines some basic
features of the story: the length of the story, the maximum
length of each “intervention” of the agents, the number of
characters, which character is assigned to which agent, the
agent who will start the performance, etc.

2.3 Agent Architectures

The Open Agent Architecture (OAA) Cheyer and Martin
(2001) is a framework for developing multi-agent systems
intended to enable more flexible interactions among a dy-
namic community of heterogeneous software agents. The
operation of the architecture is based on the idea of dele-
gation: agents do not hard-code their interactions (method
calls or messages) in a way that fixes how and whom they
will interact with, instead the interactions between OAA
agents are expressed in terms of needs delegated to a Fa-
cilitator agent. This Facilitator agent coordinates the agent
community so that it can achieve its task. It does this by
providing services such as parallelism, failure handling,
and conflict detection, which relieves each client agent
from having to worry about these issues itself. OAA’s Dis-
tributed Agents are simply programs - or wrappers around
programs - that share several common functionalities, and
which are possibly distributed across various machines.

3 The MEXICA Story Telling System

MEXICA is a computer model of creativity in writing
that develops frameworks for short stories. It is inspired
by the engagement-reflection account of writing given in
Sharples (1999). In MEXICA a story is defined as a se-
quence of actions. Each action has associated a set of pre-
conditions and post conditions, defined by the user of the
system, which are comprised by emotional links and ten-
sions between characters. Emotional links are represented
as a continuum between hate and love with discrete val-
ues ranging from -3 to +3. In this way, the precondition
of the actionHunter killed Jaguar Knightmight be that
the hunter hates the knight (an emotional link of intensity
-3; see first line of Table 1); the post condition of the ac-
tion Princess decorated Eagle Knightmight be that the
knight is very grateful towards the princess (an emotional
link of intensity +2; see second line of Table 1). In MEX-
ICA, the tension in the story increases when a character
is murdered, when the life of a character is at risk, when
the health of a character is at risk (i.e. when a character is
hurt or ill), or when a character is made a prisoner. Like
emotional links, tensions can be employed as precondi-
tions or post conditions. Actions also might include post
conditions that deactivate tensions. In this way, the ac-
tion Princess healed Jaguar Knighthas as a precondition

the fact that the knight must be injured or ill (a tension
due to health at risk) and as a post condition the fact that
the knight has been cured (the tension is deactivated) and
that the knight is very grateful towards the princess (an
emotional link of intensity +2) (see third line of Table 1).
Finally, MEXICA includes inferred tensions, i.e. tensions
that are activated when the system detects that: 1) two dif-
ferent characters are in love with a third one (tension due
to love competition); 2) when a character has two opposite
emotions towards other one (tension due to clashing emo-
tions); 3) and when a character hates other character and
both are located in the same position (tension due to po-
tential danger). If the conditions that activate an inferred
tension disappear, the tension is deactivated. Each active
tension has associated a value that the system records each
time an action is performed. In this way, the system rep-
resents as a graph the value of the tension in the tale over
story-time. A story is considered interesting when it in-
cludes increments and decrements of the story-tension,
e.g. if a princess is kidnapped (an increment in the ten-
sion) and then rescued (a decrement of the tension). All
actions’ post conditions are recorded in a structure known
as the story-context. So, the context represents the state
of affairs in the story in progress. MEXICA has two core
processes: the creation of knowledge structures in mem-
ory and the plot generation.

3.1 Construction of Knowledge Structures

MEXICA builds its knowledge structures from a set of
narratives known asprevious stories. Previous stories are
provided by the user of the system and they are com-
posed of sequences of actions. So, previous story 1 is
formed by action 1, action 2, action 3, and so on. For
the sake of a clearer explanation, we first describe how
story-contexts are updated when MEXICA processes the
previous stories and then we elaborate the explanation to
clarify how knowledge structures are created. The process
of updating story-contexts work as follows: 1) MEXICA
takes the first action in the first previous story, triggers its
post conditions and updates the story-context; 2) MEX-
ICA takes the second action in the first previous story,
triggers its post conditions and updates the story-context;
and so on. In this way, each time an action is performed
the story-context is updated. So, we can refer to the story-
context after action 1 is performed as context 1, to the
story-context after action 2 is performed as context 2, to
the story-context after action 3 is performed as context 3,
and so on. Or we can say that action 1 generates context
1, action 2 generates context 2, action 3 generates con-
text 3, and so on. Notice that context 2 is not necessarily
made up by the addition of the post conditions of actions
1 and 2. As mentioned earlier, some action’s post con-
ditions might deactivate tensions between characters, and
inferred post conditions might become active or inactive
at any moment. Thus, the story-context is a very dynamic
structure that progresses over story time.

Thus, the process to build knowledge structures works
as follows:

1. MEXICA takes the first action in the first previous
story, triggers its post conditions and updates the

Computational Creativity 2007

15

Precondition Action Postcondition
The hunter hates the knight Hunter killed Jaguar Knight
(an emotional link of intensity -3)

Princess decorated Eagle Knight The knight is very grateful towards the Princess
(an emotional link of intensity +2)

The knight must be injured or ill Princess healed Jaguar Knight The knight has been cured
(a tension due to health at risk) (and therefore the tension has been deactivated)

The knight is very grateful towards the Princess
(an emotional link of intensity +2)

Table 1: Three actions with their pre and post conditions (defined by the user of the system).

story context creating context 1. Then, it copies con-
text 1 into a new structure created in memory known
as atom 1. Next, it copies the following action in the
previous story - in this case action 2 - into atom 1. In
this way, atom 1 is linked to action 2.

2. MEXICA takes the second action in the first previous
story, triggers its post conditions and generates con-
text 2. Then, it copies context 2 into a new memory
structure known as atom 2. Next, it copies action 3
into atom 2. So, atom 2 is linked to action 3.

3. If atoms 1 and 2 are alike, the system copies the ac-
tion linked to atom 2 into atom 1 and destroys atom
2. So, atom 1 is linked to action 2 and action 3.

The following lines exemplifies this process. Imag-
ine that the first previous story includes the following se-
quence:Farmer wounded Jaguar Knight; Princess cured
Jaguar Knight; Jaguar Knight murdered Farmer; The
End (see Figure 1). The first action, where the knight is
wounded, generates context 1 which is comprised by the
tensionJaguar knight’s life is at riskand the emotional
link Jaguar Knight hates Farmer. MEXICA copies con-
text 1 into memory, creates atom 1 and links the following
action in the sequence (in this casePrincess cured Jaguar
Knight) to atom 1 (see casea in Figure 1). Notice that,
within atoms, characters are substituted by variables. In
this way, atom 1 represents the knowledge that when the
life of a character X is at risk (where character X is any
character) and character X hates character Y (where char-
acter Y is any character but X) a logical way to continue
a story is that a third character Z heals character X. This
information will be essential during plot generation. Next,
the system triggers the post conditions of the second ac-
tion in the story, i.e. when the knight is healed. So, context
2 is created; it is comprised by the emotional linkJaguar
knight is very grateful towards the Princessand a second
emotional linkJaguar Knight hates enemy. Notice that
the tension Jaguar knight’s life is at risk is deactivated as
a result of the princess curing the knight. So, it disappears
from the context. Context 2 is copied into memory to cre-
ate atom 2 and action 3 is linked to such an atom (see case
b in Figure 1). MEXICA takes action 3 and triggers it post
conditions; however, because this is the last action in the
story the process stops. The same process is repeated for
each previous story. At the end, if the system is provided
with enough stories, each atom in memory might have
several linked actions. Each atom in memory represents
a possible state of affairs in the story world in terms of
emotional links and tensions between characters. Linked

actions provide different routes that a narrative can follow
during story generation given a specific story-context.

3.2 Plot Generation

There are two core processes that interact during plot gen-
eration: engagement and reflection (see Figure 2). During
engagement the system produces sequences of actions as
follows: an initial action is selected; MEXICA triggers
all its post conditions updating the story-context; the sys-
tem employs the story-context as cue to probe memory
and tries to match an atom that is equal or similar to it; the
system retrieves all the actions linked to the matched atom
and selects one at random as the next action in the story;
the system updates the story-context and the engagement
cycle starts again. If the system cannot match any atom
in memory an impasse is declared. By default the cycle
repeats until three actions are generated or an impasse is
declared. Then, the system switches to reflection.

During reflection the system:

1. Verifies that the preconditions of all actions gener-
ated during engagement are satisfied (notice that pre-
conditions are ignored during engagement). If neces-
sary, the system inserts actions in the story produced
so far to satisfy preconditions.

2. Evaluates the interestingness and novelty of the story
in progress. A story is interested when it includes
increments and decrements of tension (e.g. if the
princess is kidnapped and then rescued); a story is
novel when it is not similar to any of the previous
stories (MEXICA compares sequences of actions be-
tween the story in progress and all the previous sto-
ries).

3. Breaks impasses.

Then, the system switches back to engagement and the
cycle continues. The interaction between engagement and
reflection generates MEXICA’s output. Atoms are knowl-
edge structures comprised by emotional links and ten-
sions. They are general enough to enclose different al-
ternatives to progress a story, but at the same time they are
specific enough to drive in a coherent way the develop-
ment of a tale. So, a narrative can be expressed in terms
of clusters of emotional links and tensions between char-
acters that progress over story time. We exploit this char-
acteristic to propose an architecture for improvisation.

Computational Creativity 2007

16

Figure 1: How atoms are created in memory: a) illustrates atom 1 comprised by one emotional link and one tension and
linked to the action Z cured X; b) shows atom 2 comprised by twoemotional links and linked to the action X murdered Y.
Z, X and Y represent variables. Atom 1 is built from context 1 and atom 2 from context 2.

Figure 2: The engagement-reflection cycle

4 An Architecture for On the Fly
Collaborative Storytelling

Two aspects determine how colaboration takes place be-
tween story telling programs: how each program ad-
dresses the task of creating stories in this way, and how
the colaboration between the story tellers is orchestrated.
We are assuming that from the point of view of creativity,
the first aspect is fundamental, whereas the second aspect
concerns a tecnical issue of interconnecting two systems.
An ideal solution to this second problem should be inde-
pendent of the actual storytelling processes employed by
each participant.

4.1 The Participating Storytellers

We employ two agents: MEXICA 1 (M1) and MEXICA
2 (M2). The basic process of our system will work as
follows:

• the user provides an initial action (action 1).

• M1 and M2 create their own story-context (so, we

have context 1 of M1 and context 1 of M2).

• M1 generates one action to continue the story (ac-
tion 2), updates its story-context (creating context 2
of M1) and communicates to M2 the action 2.

• M2 receives action 2, updates its own story-context
(creating context 2 of M2) and generates a new action
(action 3) to continue the story.

• M2 updates its own story-context (creating context
3 of M2) and communicates to M1 the new action
(action 3) in the improvisation.

• M1 updates its story-context (creating context 3 of
M1), generates a new action (action 4), and so on.

In such a setting each one agent would only start preparing
its actions once the other one had finished his contribution.
The improvisation problem would become equivalent to
the two story-tellers taking turns in extending the story.
Several modifications to the basic process can be applied
to enrich the simulation. The agents involved in the basic
model basically act in the role of authors, because there

Computational Creativity 2007

17

is no difference between the way they respond to a con-
tribution of the other agent and the way they respond to a
contribution of their own. This can be changed by extend-
ing the number of actions that each agent can contribute
in his turn. If an agent can produce more than one action
without passing the turn to the other agent, this forces the
passive agent to model a new attitude: that of a listener of
the story. At any point during an improvisation, one agent
would be operating in speaker mode, and the other one in
listener mode. While in speaker mode, an agent generates
actions and communicates them to other participants in
real-time. While in listener mode, an agent may generate
actions, but it does not communicate them. Instead, it puts
them in a store of tentative contributions to wait until its
turn comes to operate in speaker mode. This store of con-
tributions must be revised whenever a new contribution is
received from a speaker.

An agent acting inspeaker modewould operate as fol-
lows:

• At the start of its turn, it communicates to other par-
ticipants all those of its stored tentative contributions
that were not in conflict with those communicated
during previous turns, and which have not already
been contributed by other agents.

• Then it carries on generating new actions. At each
stage of the turn, it generates one action to continue
the story, updates its story-context and communicates
to the other participants the new action.

• It carries on in this way until his turn finishes.

• When it does, the agent switches to listener mode and
some other agent switches to speaker mode.

An agent acting in listener mode must carry on two
parallel process that it must combine to result in a sin-
gle context. On one hand it must silently generate tenta-
tive contributions to the ongoing storyline. On the other
hand, it must keep its version of the story line updated
with whatever contributions are provided by other agents
acting in speaker mode. To achieve this, a listening agent
must keep a store of his tentative contributions, which are
possible continuations of the story but which have no fixed
place in the story line until he actually communicates them
to other participants. To achieve this, it must maintain
two different versions of the context: thecurrent context
corresponding to contributions actually communicated by
speaker agents, and atentative contextresulting from ap-
plying to the current context the list of his tentative con-
tributions.

The combination of the two tasks of an agent inlisten-
ing modewould operate as follows:

• While it receives no contributions from outside
speakers, it generates possible actions to include in
its contribution when its turn comes (but it does not
communicate them to other participants!), and it up-
dates its tentative context with them.

• When an agent in listener mode receives an action
from another agent acting in speaker mode, it updates
its own current story-context by adding that action,

and it revises its tentative context in the following
way: if the new action was already contemplated in
its tentative context, it is retracted from it (and all ten-
tative contributions beyond it are retracted with it);
and if the new action is in conflict with some action
in the tentative context, the conflicting action (and all
contributions beyond it) are retracted.

A tentative action stored by one agent A is said to be
in conflict with the set of actions communicated to it by
another agent B if that action is incompatible with those
described for the same character in the set of actions al-
ready communicated by B, or if it gives rise to tensions or
emotional links incompatible with those arising from the
same set of actions already communicated by B.

In this model, both agents prepare material in paral-
lel, all the time monitoring the speaker’s contribution, and
accepting the need to revise their prepared material in the
face of conflicts. This constitues a richer model of the
process of improvisation than the original basic process.

A further option for enriching the model might be
to ensure that each agent operate on different resources
or with a different configuration of the engagement-
reflection cycle.

Each agent might have different content in their
knowledge structures, i.e. the previous stories for each
agent can be (either slightly or radically) different. In
the same way, the pre and post conditions of story actions
may have some differences between agents. This will pro-
duce unique contexts, i.e. contexts that do not exist in the
agents’ knowledge-base and that might lead to interesting
plots.

In normal conditions MEXICA evaluates the mate-
rial generated during engagement each time it switches
to reflection. Although MEXICA generates plots through
engagement-reflection cycles, the systems is also capa-
ble of producing material employing only the engagement
routines or only the reflection routines. Thus, each agent
can perform in different configurations of the cycle. For
example, one agent can perform under engagement only
and the other under reflection only, or one under engage-
ment only and the other under engagement & reflection,
etc. That is, agents might evaluate coherence, interesting-
ness and novelty at different times during the whole im-
provisation process. By default MEXICA generates three
actions during engagement and then switches to reflection
to evaluate the material generated. The system evaluates
coherence by checking that all actions’ preconditions are
fulfilled. If necessary, the system inserts actions to sat-
isfy preconditions. If the system is not able to produce
an action during engagement it switches to reflection and
inserts one action to continue the story. In this way, one
engagement-reflection cycle is completed. The outcome
of these processes might range from one to several ac-
tions (depending on how many actions are inserted during
reflection). Thus, during improvisation both agents run
in parallel one engagement-reflection cycle. In this way,
one agent is contributing with the next action in the story
and the other one is trying to prepare material in advance,
i.e. to anticipate possible directions that the improvisation
might take in order to avoid lags. This process changes
slightly if one of the agents is running only during the en-

Computational Creativity 2007

18

gagement mode or only during the reflection mode.
In this way, we represent the fact that real actors

have different knowledge, experiences, perceptions of the
world, theatrical resources, etc., and nevertheless they are
able to produce an improvisation.

4.2 Interconnecting the Storytellers

In order for our simulation to constitute a plausible model
of colaborative storytelling as carried out by humans, it is
important that the information shared between the story
tellers be restricted to communication acts equivalent to
saying out aloud a sentence - or a group of sentences -
intended as a contribution to the story so far. For the
sake of simplicity of the model, these communication acts
may take the form of valid utterances in some formal
or semiformal language rather than natural language sen-
tences. This avoids to a certain degree the need to address
the problem of natural language understanding, which is
known to be complex. We operate under the assumption
that the only requisite for our model to be plausible is that
whatever form is being used to communicate be easily
convertible into the internal representation that the story-
tellers are using. The OAA’s Interagent Communication
Language (ICL) constitutes a good vehicle for the type of
semiformal communication that is envisaged.

With respect to implementation details, this particu-
lar task of the model has not been addressed yet, since
most work has focused so far on getting the colaborative
storytellers operative. It is our intention to model the ac-
tual process of conversation by launching each storyteller
as an individual agent within an Open Agent Architec-
ture setting. In this way, the OAA Facilitator would act
as mediator between the agents, and the communication
protocols provided would guarantee the required level of
abstraction from the low level detail of communication be-
tween each storytelling process. As an additional advan-
tage, we contemplate the possibility of taking advantage
of OAA’s functionality to run each story teller on a differ-
ent machine, and connect them into a distributed network
of storytellers.

5 Discusion

An important issue to consider is whether the proposed so-
lution differs in any significant way from the simpler turn-
taking version where each participant only starts preparing
his contribution once other players have finished theirs.

This needs to be addressed at three different levels. On
one hand, it is expected that the proposed solution would
show an improvement in efficiency, reducing possible de-
lays between the contributions of different speakers. How-
ever, the response times of the story generators for prepar-
ing tasks involving the type of short contributions envis-
aged here may be too short for any significant difference
to become apparent.

On the other hand, for similar response times the qual-
ity of the contributions must be considered. If a player
has been lucky and no conflicts have arisen, he can start
straight away presenting a more complex contribution
than he might have put together if he started preparing

from scratch. If severe conflicts have appeared, severe
enough to force complete rejection of everything prepared
so far, the speaker would not be worse off than if he had
not prepared at all. There is an intermediate possibility,
where only part of the plan needs to be rejected. This sit-
uation still leaves the speaker slightly ahead of the game,
since he already has some material to kick-start his contri-
bution. Additionally, for automatic storytellers this option
has the advantage of introducing a factor of variation: the
contributions that may result from building upon part of a
previous plan that has had to be pruned may be different
from what would have been planned from scratch.

Regarding the improvisation issues that we identified
earlier as key elements for this research, we would like
to mention a few relevant questions. An improvisation
might be considered “good” when: it is interesting, co-
herent and novel; and it is the result of the interaction of
at least two independent agents with different content in
their knowledge-bases and/or different operation modes.
MEXICA provides the mechanisms to satisfy this require-
ment. On one hand, we are employing MEXICA’s meth-
ods to evaluate the interestingness, coherence, and novelty
of a story. In MEXICA a story is interesting when it in-
cludes increments and decrements of the tension; a story
is considered as novel when it is not similar to any of the
previous stories in its knowledge-base; and it is consid-
ered coherent when all actions’ preconditions are fulfilled
within the story. On the other hand, each MEXICA agent
can have different knowledge since their knowledge struc-
tures are created from the files of previous stories provided
by the user. So, if they are different, the atoms for each
agent are different. MEXICA can work in four different
operations modes; furthermore, the system includes more
than 20 parameters that control different functions within
system. Thus, the behavior of each MEXICA agent can
be controlled by the user. If we build agents with differ-
ent knowledge and behavior we avoid developing a sim-
ple turn-taking computer program. Coherence in impro-
visation is a very complex problem. The current version
of MEXICA handles the coherence issue by modifying
the material previously generated, which is not an option
for improvisation. So, we require to develop new rou-
tines that help us to deal with this situation. But at least
MEXICA is able to point out problems of coherence. Re-
garding the representation of different knowledge and ex-
periences, in MEXICA each character has its own repre-
sentation of the story-world context. So, employing the
same structures each actor during improvisation can have
its own representation of the word. Experiments will tell
us if that is enough to generate good improvisations. Con-
cerning emergent contingencies, when tensions like love
competition or clashing emotions arise in a story, there
is a good opportunity to create interesting plots. MEX-
ICA already is capable of detecting and exploiting these
situations. With respect to shared representations of the
world, MEXICA employs clusters of emotional links and
tensions between characters, referred to as contexts, to
represent the state of affairs of the story-world. As men-
tioned earlier, contexts are very dynamic structures that
can be easily built and modified during improvisation. So,
we believe they can nicely support the representation of

Computational Creativity 2007

19

the new story-world created during improvisation.
The architecture described in this paper constitutes a

very interesting platform from which to address some of
the more mistifying issues of improvisional creativity. It
may seem that setting two programs against one another
may reduce the interest of the experiment to whatever re-
stricted capabilities the automatic storytellers can model,
which need not be as many or as good as a human story-
teller might have shown. The option of connecting them
via a multiagent architecture leaves open the possibility of
developing an interface module for humans to participate
in the task. In a kind of Wizard of Oz experiment, the
human would initially attempt to reproduce the behaviour
of an automatic storyteller, as specified in their descrip-
tion. However, if the interaction is recorded, all depar-
tures by the human from the specified behaviour would be
duly noted, and this record could then be carefully studied
to identify functionalities that might improve the perfor-
mance of the automated storytellers.

An important issue is how the system would scale if
more agents are used. It seems aparent that the introduc-
tion of more than one agent may result in an improve-
ment of the variety of the resulting stories, as a result of
a greater range of possible contexts being taken into ac-
count when building the story. However, each increase in
the number of agents also increases the risk of fruitless
computations (those that give rise to tentative actions that
are later rejected either due to conflict or redundancy). A
balance must be sought between the added variety and the
loss of efficiency introduced by collaboration.

6 Conclusions and Further Work

An interesting issue that may need to be considered in fur-
ther work is whether the actors may also use preparation
or planning at a more abstract level, to introduce in the
story material that they hope to be able to use at later
stages. This would correspond to extending the idea of
a tentative context so that agents may maintain actions as
tentative even while they are operating in speaker mode,
in the hope of contributing them during a later turn. This
opens interesting possibilities, both in terms of how that
preparation might take place and how it interacts with
short-term preparation. Additionally, there is a revision
problem equivalent to the one occurring for preparation,
in as much as the material introduced by one player with
a particular aim in mind may be exploited by the other in
a different, possibly conflicting way. This would force the
original player to forsake his long term plan, or at least to
modify it.

Existing academic work on oral literature may provide
keys to techniques and resources that human storytellers
have used in the past to solve problems of lack of inspi-
ration. These include the use of formulaic constructions
to resolve descriptions of characters, locations or events,
the insertion of brief messages addressed to the listeners -
possibly intended to build suspense or to draw attention to
particular ingredients of the story -, or the introduction of
parallel stories as subtexts. Such resources may be consid-
ered as possible expansions of the architecture presented
here if it is considered that their addition may improve the

quality of the resulting story. They may provide a good
way of covering up any noticeable gaps in the sequence
when radical revision of prior preparation forced by con-
flict leaves a speaker with no material to start contributing
immediately.

Acknowledgements

This work is partially supported by the Spanish Ministry
of Education and Science project TIN2006-14433-C02-
01, and research group grant UCM-CAM-910494, jointly
funded by Universidad Complutense de Madrid and the
Comunidad Aut́onoma de Madrid (Dirección General de
Universidades e Investigación).

References

Agre, P. (1997). Computation and Human Experience.
Cambridge University Press, Cambridge.

Agre, P. and Chapman, D. (1987). Pengi, an implementa-
tion of a theory of activity. InProceedings of the Sixth
National Conference on Artificial Intelligence, Seattle.

Bailey, P. (1999). Searching for storiness: Story-
generation from a reader’s perspective. InWorking
Notes of the Narrative Intelligence Symposium, AAAI
Fall Symposium Series., Menlo Park, CA. AAAI Press.

Bellinger, M. F. (1927). A Short History of the Drama.
Henry Holt and Company, New York.

Cheyer, A. and Martin, D. (2001). The Open Agent Archi-
tecture.Journal of Autonomous Agents and Multi-Agent
Systems, 4(1):143–148.

Meehan, J. R. (1977). Tale-spin, an interactive program
that writes stories. InProceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence, Cam-
bridge, Mass. Morgan Kaufmann.

Moraes, M. C. and da Rocha Costa, A. C. (2002). How
planning becomes improvisation? - a constraint based
approach for director agents in improvisational sys-
tems. InAdvances in Artificial Intelligence, 16th Brazil-
ian Symposium on Artificial Intelligence, SBIA 2002,
volume LNCS 2507, pages 97–107.

Pérez y Ṕerez, R. and Sharples, M. (2001). Mexica: a
computer model of a cognitive account of creative writ-
ing. Journal of Experimental and Theoretical Artificial
Intelligence, 13(2).

Rumelhart, D. (1975). Notes on a schema for stories. In
Bobrow, D. G., editor,Representation and Understand-
ing. Studies in Cognitive Science, New York. Academic
Press.

Sharples, M. (1999).How We Write: An Account of Writ-
ing as Creative Design. Routledge.

Trastoy, B. (2005). La improvisación: estrategias pro-
ductivas de una práctica esćenica alternativa. hablan los
teatristas.Telondefondo, (1).

Turner, S. R. (1994).The Creative Process: A Computer
Model of Storytelling. Lawrence Erlbaum, Hillsdale,
NJ.

Computational Creativity 2007

20

Narrative Inspiration: Using Case Based Problem Solving to Support
Emergent Story Generation

Ivo Swartjes, Joost Vromen and Niels Bloom
Human Media Interaction

University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

{swartjes,vromen,bloom}@cs.utwente.nl

Abstract
We consider a system that can generate stories as a cre-
ative system. One approach to building such a system is
to simulate and narrate the behaviour of believable char-
acters in a virtual story world. A risk of this approach is
that no interesting story emerges. In order to make the
behaviour of the characters more interesting from a story
perspective, we propose a system that can use example
story pieces, written from a plot perspective by a human
author, to inspire decisions for characters in an emerging
story.

On a more philosophical note, we discuss the story
generation process in the light of a characterization of
creative systems and show that considering an automated
story generator as a creative system can help to reveal im-
plicit design choices.

Keywords: Story Generation, Computational Creativ-
ity, Case Based Reasoning, Fabula.

1 Introduction
The Virtual Storyteller is an experiment in the creation of
stories through simulation of a dramatic story world in-
habited by virtual characters (Theune et al., 2004). We
separate the content of a story from its presentation (e.g.,
in the form of natural language or animation). The focus
of this paper will be on the generation of story content,
meaning we focus on a way to generate an interesting se-
quence of events.

The characters in the Virtual Storyteller are modelled
to be believable, which means amongst other things that
they are pursuing their own goals, have an emotional
model and a simple form of personality1. Believable be-

1An extensive discussion of what it means for virtual charac-
ters to be believable can be found in (Loyall, 1997)

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

haviour does not necessarily lead to a coherent and inter-
esting plot, though. This was the big lesson learned from
one of the first systems to use character models to gener-
ate stories, namely TALE-SPIN (Meehan, 1981). TALE-
SPIN was able to tell simple Aesop-like stories about an-
imal characters that were trying to fulfil their basic needs.
The stories generated by TALE-SPIN were certainly be-
lievable but often uninteresting. There is no guarantee that
the coincidental interaction between the characters results
in a dramatically interesting and coherent whole. Subse-
quent approaches to story generation have therefore tried
to focus more on plot development. In these approaches,
the succession of a sequence of dramatic events is mod-
elled, and characters are placed in function of these events
(right...we need a robbery...which characters can we use
for that?) which in turn makes it quite difficult to have the
characters appear believable.

A contemporary example of character-driven narrative
is the FearNot! system, which simulates affectively driven
characters that exhibit and respond to bullying behaviour
(Aylett et al., 2005). The goal of the system is to educate
children – who play the role of invisible friend of the main
character that is being bullied – how to deal with such
behaviour. A typical plot-driven approach is the Fabulist
system (Riedl and Young, 2005), which is able to plan a
plot that fulfils certain dramatic goals, whilst trying to re-
late the plan steps to character intentions and personality.

We are investigating character-driven (emergent) story
generation as in the FearNot! project. The main difference
is that in the approach we pursue, characters have a dou-
ble role: they are believable inhabitants of a virtual story
world as well as improvisational actors that help to cre-
ate an entertaining experience. With the latter, we hope to
make up for the potential lack of story development when
using only believable characters. We also intend to use
a plot agent that influences the course of the story to in-
crease the chance of interesting plot developments.

In the course of an emergent narrative, there are many
decisions to make for both the character agents (in terms
of which goals to pursue, how to respond emotionally to
new information) and the plot agent (in terms of how to
affect the emerging story). Character agents are imple-
mented using an affective architecture with the aim of
making believable decisions. We hope to augment the de-
cision space with options that are also interesting from a
story development perspective. We want to allow human

Computational Creativity 2007

21

authors to be able to write example story pieces and allow
a Case Based Reasoning (CBR) system to use these pieces
as example solutions that inspire some of these decisions.

After discussing some work related to the use of CBR
in story generation in section 2, we will describe a creative
problem solver based on CBR and explain how it can in-
spire decision making for the character and plot agents
in section 3. Sections 4 and 5 will provide a bit more
in-depth description of the proposed system in terms of
cases and creativity heuristics, respectively. The imple-
mentation of the creative problem solver is discussed in
section 6. Section 7 will position the design of a story gen-
erator within the context of the formal framework for cat-
egorizing creative systems proposed by Wiggins (2001).
We argue that such a positioning is useful to make more
informed choices in the design of creative story generation
systems.

2 CBR in the Context of Story Generation
Case Based Reasoning (CBR) is a reasoning process that
finds its origins in the psychological model of episodic
memory. In CBR, knowledge is captured in the form of
a set of cases that describe a specific problem, and a spe-
cific solution to that problem. To reason about solutions
for problem situations, the collection of cases is explored
in order to find similar situations. The solutions for those
similar problem situations can be adapted to form a solu-
tion to the problem that needs to be solved.

CBR has been applied in the context of storytelling or
storytelling-like systems with satisfying results (Mueller,
1987; Turner, 1994; Fairclough, 2004; Gervás et al.,
2004). With the exception of Mueller (1987), who uses
CBR in a system that generates daydreams, the use of
CBR in these systems has been inspired by or directly
based on the work of Vladimir Propp (Propp, 1968).
Propp analysed Russian folk tales, and discovered a big
structural similarity between them. He identified a set
of character roles (e.g., the hero, the villain) and a set of
character functions (e.g., departure, interdiction and mar-
riage). Each of the folk tales he investigated contains a
subset of the character functions, and always in a certain
order. This makes Propp’s analysis pleasant to formalize
and use in story generators, but its very order constraints
make it difficult to use in the emergent story generation
process we are exploring, where – theoretically – anything
can happen that does not conform with this order.

We therefore use CBR to generate high-level character
behaviour based on story-specific input rather than Prop-
pian plot variations. We want to provide a human author
with the possibility to write story content that has the flex-
ibility to be recombined and reformed to expand the space
of situations in which it can be used. Our problem solver,
discussed in section 3, has been influenced most strongly
by the MINSTREL system (Turner, 1994). Turner con-
siders creativity to be an extension of problem solving,
the result of cognitive processes that bring together pieces
of old knowledge in new ways. MINSTREL has demon-
strated the possibilities of case based problem solving to
model the creative process of generating simple stories in
the King Arthur domain. MINSTREL takes storytelling

goals as problems to solve, and retrieves cases that form
a solution to these problems. Usually, CBR retrieves so-
lutions by comparing the problem to solve with similar
problems in the case base. MINSTREL adds creativ-
ity to this problem solving by actively transforming the
problem descriptions into similar descriptions, and subse-
quently adapting the found cases to fit the original prob-
lem. MINSTREL uses a collection of Transform-Recall-
Adapt methods (TRAMs) for this process.

For example, if MINSTREL attempts to create a story
in which a knight commits suicide, a problem descrip-
tion could express the following problem: A knight does
something that results in the knight’s death. A TRAM
can transform this problem description into: A knight does
something that results in someone’s death. Based on this
problem description, the following case can be retrieved:

A knight fights a troll with his sword, killing the
troll and being injured in the process.

This retrieved case can then be adapted to form a so-
lution to the original problem description:

A knight fights and kills himself with his sword.

A combination of such problem solving steps, guided
by author-level goals and themes, leads to the structural
composition of simple stories.

MINSTREL was implemented using a custom frame-
based language called Rhapsody, implemented in Lisp.
Currently, attempts are being undertaken to re-implement
MINSTREL using the contemporary knowledge formal-
ism OWL-DL, a dialect of the well known ontology lan-
guage OWL resembling Description Logic (Peinado and
Gervás, 2006). Similarly, our problem solver uses knowl-
edge from a story world ontology specified in OWL-DL
for its transformations. The problem solving cycle has
big similarities to MINSTREL’s model of creativity but is
only loosely based on its specific details. As we will see
in section 3, we intend to use case based problem solving
for a different purpose than the structural composition of
a story from cases, as done in MINSTREL.

3 Using Case Based Problem Solving for
Character and Plot Decisions

Our problem solver uses CBR for two reasons. First, be-
cause the knowledge needed for a certain problem do-
main is covered by a set of example cases instead of an
extensive set of ‘first principles’2, CBR can decrease the
amount of knowledge needed and reduce or eliminate the
need to model the causal interactions of this knowledge in
the form of a reasoning system (Cunningham, 1998).

Second, we believe that cases form an intuitive way
for a human author to write story content. As we will
discuss in section 7, the designer of a story generator is
also responsible for the quality of its generated stories.
It therefore makes sense to make the input knowledge as

2In the case of our decision making, these are principles like
‘a person can fight a dragon when he is near one, has a weapon
and is not too afraid’ and ‘if you are hungry, and you know where
food is, then you should eat the food’.

Computational Creativity 2007

22

accessible to authors as possible and we believe that using
examples (rather than worrying about the ‘first principles’
rules that underly them) satisfies that concern.

The cases in our problem solver therefore take on the
form of example pieces of story. We believe that such
example story pieces can form a good knowledge source
in the decision making of character agents in a storytelling
domain, most importantly because they describe character
behaviour in a narrative context, transcending individual
decision making. Take for example a case expressing the
following example story piece: Frustrated by her singing,
John insults his little sister, making her cry. Not only does
this case offer a character a believable coping behaviour
for being frustrated at one’s sister, it is also an interesting
decision because it affords an interesting story situation
(in this case, a decision that affects important other char-
acters). When the cases have been constructed to express
believable character behaviour as well as interesting nar-
rative situations, using these knowledge sources results in
behaviour that is in theory both believable and interesting.

The character agents of the Virtual Storyteller make
decisions based on appraisal and deliberation processes
(which goals to take on, which actions to pursue, how to
interpret perceptions and how to respond to them emo-
tionally). As an alternative to using these processes, such
decisions can be contracted out to the creative problem
solver by translating them into problem descriptions and
asking the problem solver to find solutions for them. We
aim for an integration of this decision making within the
processes that our character agents already run, similar to
the work of Moraes and Costa (2004) which shows how to
make such an integration of ‘improvised’ decision making
within a BDI architecture.

The cases can also be used by the plot agent to make
decisions about influencing the emerging story. Such de-
cisions involve introducing dramatic events, adding new
knowledge about the story world, or suggesting actions
and goals to the characters. Because the plot agent uses
much of the same episodic knowledge as the characters,
it can make reasonable assumptions about the character’s
reaction to these events. In-depth discussion of the inte-
gration of the decision making process with the Virtual
Storyteller architecture falls outside the scope of this pa-
per, which focuses rather on the decision making process
itself.

Figure 1 shows the decision making process we pro-
pose, including the CBR problem solving cycle we intend
to incorporate in the Virtual Storyteller. A user – be it one
of the character agents or the plot agent – needs to make
a decision which it translates into a problem for the cre-
ative problem solver. The problem solving cycle starts,
in which copies of the problem are transformed into sim-
ilar problems. This is a recursive process; transformed
problems can again be fed into the problem solving cycle.
Cases that match the transformed problem specification
are retrieved, and adapted so that they form a solution to
the original problem. This will be explained in more detail
in sections 4, 5 and 6.

The choice which of the creative solutions to use as
decisions for the users of the creative problem solver (i.e.,
the character and plot agents) should be informed by con-

Figure 1: The process of decision making using the cre-
ative problem solver

straints given by the users. Inherent to unconstrained cre-
ativity is that creativity errors can occur. A child having a
limited concept of objects and holes could have a creative
idea to fit a square peg through a round hole. The idea is
understandable, but reality proves that the solution does
not work. By constraining the valid solutions, we can de-
crease the number of creativity errors. These constraints
could be given by a domain-specific model of the ‘impos-
sibilities’ of the domain or by the state of the story world
at a particular moment in time. If a solution meets the con-
straints, it can be used as a decision. If not, the problem
can be clarified by extending it with extra information in
the form of new constraints. For instance, it could be that
a solution for the knight to use a sword to kill himself does
not work, because the story world contains no sword. The
problem description should at that point be clarified: ‘find
solutions that do not contain a sword’.

4 Knowledge Representation
A case in the context of our system expresses an example
story piece in a formalized language. As discussed before,
this piece should express both believable behaviour of the
character(s) partaking in it, and the narrative context of
the event sequence itself. We will first discuss a knowl-
edge representation used to express such story pieces, and
then give formal definitions of case and problem represen-
tations.

4.1 Fabula Representation

In the ability to interpret a sequence of events as a story,
causality between events plays a major role (Trabasso
and Nickels, 1992). Indeed, the story generation system
MAKEBELIEVE (Liu and Singh, 2002) is able to cre-
ate simple stories using only facts about causality between
situations as represented in a large common sense knowl-
edge base. From the viewpoint of narratology, a distinc-
tion is often made between the fabula of the story, a se-
ries of causally and chronologically related events that are
caused or experienced by characters in a story world, and
the sjuzet, a dramatic and subjectified abstraction of the
fabula.

The Virtual Storyteller produces fabula which is sub-
sequently fed to processes that select and narrate a sjuzet.

Computational Creativity 2007

23

We capture the fabula of our simulated story world
in the form of a knowledge representation that is dis-
cussed in Swartjes and Theune (2006). This representa-
tion captures the temporal-causal course of events in the
story world. The representation is given by a quadruple
< E, T, C,D > where E is a set of fabula elements, T is
a set of temporal annotations to these fabula elements, C
is a set of causal relationships between fabula elements,
and D is a set of descriptive contexts that are linked to the
fabula elements and describe their contents. E is divided
into six categories: Event, Perception, Internal Element,
Goal, Action and Outcome. C is divided into four cate-
gories: physical causality, psychological causality, moti-
vation and enablement. Elements of D are subgraphs that
can contain fabula as well; this allows for embedded ex-
pressions like:

“The bank owner believes that it is the bank
robber’s goal to be rich, and that that goal
motivates an action for the robber to rob the
bank; this belief psychologically causes the
bank owner to be scared.”

The fabula representation is based on a cognitive
model for the comprehension of simple stories (Trabasso
and Nickels, 1992). This model describes the causal con-
nections that children ascribe to a series of events in a pic-
ture story in their attempt to understand the story that the
picture sequence conveys. The Virtual Storyteller gener-
ates similar causal connections; a fabula is the result of
logging the causality between dramatic events that hap-
pen in the story world, the resulting beliefs and emotions
of the character agents, their goals, attempts to reach these
goals in the form of planned actions, and the outcomes of
these goals once a goal is achieved or abandoned.

4.2 Problem and Case Representation

For a smooth integration of the problem solver with the
Virtual Storyteller, the fabula representation is used to ex-
press both the cases in the case base of the creative prob-
lem solver, and the problems that should be solved. The
problems can be constructed by the agents that use the
problem solver; the cases are in principle constructed by a
human author.

A problem P is a tuple < Pat, Con > where Pat
is the pattern space defining knowledge that must occur
in the solution, and Con defines the constraint space in
the form of a pattern that should not occur in the solution.
Both Pat and Con are expressed in terms of fabula but
may contain uninstantiated elements.

A case C, also expressed in terms of fabula, has the
following requirements:

• C demonstrates a narrative concept. A narrative con-
cept could for instance be ‘hiding from a threat’ or
‘flying over an area to search for something’. The
expression of a narrative concept is an implicit de-
scription of an example problem and a solution to it.
The problem is for instance the threat, and the solu-
tion is to hide. Of course, there can be many cases
demonstrating the same narrative concept.

• C is context complete with regard to its narrative con-
cept. Cunningham (1998) states that the case rep-
resentation must capture the predictive features of a
problem. Applied to storytelling problems, we define
a context complete case as a case that contains all the
elements that are necessary for the case to be viewed
as ‘believable’ by the author of the case, regarding
the narrative concept it is supposed to express, and
contains nothing more than that.

5 Creativity Heuristics
Unlike in standard CBR, MINSTREL uses creativity
heuristics that actively transform problems to find cases
instead of finding and adapting cases based on similarity
metrics. The reasons for this given by Turner are that truly
creative solutions are not found if the problem stays intact,
and that adaptation of retrieved cases to fit the problem
specification is very difficult. By using transformations
and a simpler retrieval mechanism, the adaptation of re-
trieved cases can be done by reverse application of the
transformations.

To guide the transformation of the problem space, we
use creativity heuristics similar to Turner’s TRAMs. The
heuristics are domain-specific and provide a way to trans-
form a problem P into a similar problem P ′. When P ′

enables the system to retrieve a case C, the used heuris-
tic defines a way to apply a reverse transformation to C
to create C ′ which forms a solution to P . When search-
ing for a solution, the creative problem solver can use any
applicable creativity heuristic to transform the problem.
Problems can undergo a series of these transformations in
succession, although too many transformations will make
the problem too dissimilar from the original problem and
cause found solutions to be unsuitable to solve the original
problem. Therefore, the number of successive transforma-
tions are limited.

Our creativity heuristics implement the following
steps:

Match determines if the heuristic is applicable to the cur-
rent problem;

Transform defines how the problem space is trans-
formed;

Retrieve finds the cases that match the transformed prob-
lem;

Adapt defines how a retrieved case is adapted to the orig-
inal problem by applying the transformation in re-
verse.

Turner (1994) has implemented and evaluated a num-
ber of creativity heuristics in MINSTREL. Most of them
can be divided into a number of functional categories: re-
laxation, generalization, substitution of a similar subpart
and planning knowledge. We will show how we have
adapted two of MINSTREL’s heuristics to the problem
solving domain of the Virtual Storyteller: Generalize Ac-
tor and Switch Intention. We will discuss these heuristics
below.

Computational Creativity 2007

24

5.1 Generalize Actor

Some of MINSTREL’s most useful heuristics involve gen-
eralization: moving from a specific problem to a more
general problem. Elements that can be generalized in
our fabula representation are for instance objects in the
story world, character roles, actions and their actors, rep-
resented in terms of domain specific OWL ontologies.
Generalization heuristics assume that a problem definition
will remain valid when one such element is replaced by a
generalization of that element. An example is shown for
generalization of the actor of an action (generalizing other
elements proceeds in a similar fashion):

Match: The problem should contain at least one action
individual with an agens relation to an actor indi-
vidual. The agens property of an action refers to
the character performing the action.

Transform: Select one such actor individual at random,
and replace its type by a generalized type based on its
ontology hierarchy. Only generalize a type one step
up in the hierarchy.

Retrieve: For each of the cases in the case base, check
if part of the case description unifies with the pattern
space Pat of the transformed problem description,
and the case description does not contain knowledge
specified in the constraint space. Select the cases for
which this holds.

Adapt: Identify the actor individuals from the retrieved
case whose type matches the generalized type cre-
ated by the Transform step. Replace all such actor
individuals and their type with the actor individual
and type from the original problem.

Consider a fragment of a problem description express-
ing “A princess runs away from a dragon.” Examples of
actor and action generalizations of this fragment (general-
ized element in italics):

1. “A princess runs away from a monster,” leading to
the retrieval of cases about princesses running away
from orcs and trolls;

2. “A woman runs away from a dragon,” leading to the
retrieval of cases about queens, shepherdesses or lit-
tle girls running away from dragons.

3. “A princess moves away from a dragon,” leading to
the retrieval of cases about princesses walking, sail-
ing or swimming away from dragons;

5.2 Switch Intention

Switch Intention is an example of a heuristic that substi-
tutes a subpart of a problem for a subpart that is similar
in meaning. Switch Intention is based on the idea that if
something happens unintentionally, one can try to make
this happen intentionally. Actions can cause events that
the agent did not intend or expect, or failed to take into
account. Cases describing this can be transformed into
cases where these events are intended:

Match: The problem should contain at least one goal
- uninstantiated action - positive outcome combina-
tion. In other words, the problem is about “what ac-
tion brings the goal to a successful outcome?”

Transform: Using the goal found in the match step, find
an event that achieves that goal3. Construct a new
problem containing an uninstantiated action that un-
intentionally causes the found event. The new prob-
lem is about “what action can cause an (accidental)
event that brings the goal to a successful outcome?”

Retrieve: Similar to the Retrieve step of the Generalize
Actor heuristic.

Adapt: Replace the original uninstantiated action with
the action found in the retrieved case, and add the
fact that the original goal (from the match step) mo-
tivates this action.

This heuristic could be used in a context like the fol-
lowing. A little princess wants to go play outside but
needs to ask the king for permission. When she finds him,
he is sound asleep in his chair. What can the princess do to
wake up the king? The Switch Intention heuristic is based
on the premise that instead of executing an action to wake
up the king in some way, maybe she can cause an event
that wakes him up. If the case base contains a case where
a burglar wants to close the door and therefore slams it
shut, accidentally waking up the house owner, this case
can be transformed using the Switch Intention heuristic so
that the princess will slam the door shut in order to wake
up the king.

6 Implementation
A prototype implementation has been developed in Java.
The ontolologies of the fabula and the objects in the story
world are expressed in OWL-DL. At the moment, these
are simple ontologies that do not use the full extent of
OWL-DL’s expressive power. The fabula representation
used to describe the cases and problems are expressed as
named RDF graphs to express modality (Carroll et al.,
2005).

An RDF graph is a set of triples < S,P,O > express-
ing subject, predicate and object of a fact, respectively.
A named RDF graph is an RDF graph with an identifier
that can be referred to. Each triple that is part of a named
RDF graph can be described as a quadruple (called quad)
< G,S, P,O >, with G being the graph identifier. This
contextualizes statements and allows for expressing infor-
mation about triples by referring to their graph identifier.
So not only can we express that a certain goal to attain
some state motivates an action to walk somewhere:

(maingraph
goal.2 motivates action.9)

(maingraph
goal.2 rdf:type AttainGoal)

(maingraph
action.9 rdf:type Walk)

3This follows from the effects of the events if the events are
represented as planning operators.

Computational Creativity 2007

25

...

but we can also express what the goal means (for instance,
the goal is that the princess has a friend):

(maingraph
goal.2 hasContents graph.5)

(graph.5
princess.1 hasFriend friend.5)

...

The prototype implementation is based on Jena4 and
uses a process of querying (using the SPARQL query lan-
guage5) and transformation (using low-level quad replace-
ment) of these sets of quads. The match step queries the
pattern space of the problem description, and one result of
this query is chosen at random. This result is a set of vari-
able bindings; the quads that were used to bind these vari-
ables are mapped to their transformed counterparts (e.g.,
by looking up the superclass of an individual’s type). The
mapping is remembered for the adaptation step. In this
step, the original quads are used to replace quads from the
retrieved case by quads with their original values filled in.

We have implemented the problem solving cycle us-
ing standard breadth-first search, assuming that solutions
that are not found with a limited number of successive
transformations, will be too far off to form a good solu-
tion to the problem being solved. Preliminary results in-
dicate that even with two generalization heuristics and a
limit on the number of transformations, the search space
quickly becomes quite big, due to the fact that there are
many ways in which one heuristic may match the prob-
lem description. Even a simple problem description may
contain quite a number of objects and actions that can be
generalized. For application in the Virtual Storyteller in
reasonable processing time, we might have to make con-
cessions in the number of calls to the creative problem
solver and the creative possibilities of it. Another option
to limit the processing time is to pre-process transforma-
tions of some expected problem descriptions offline.

7 Story Generators as Creative Systems
Wiggins (2001) discusses a formal framework to define
and categorize creative systems. Based on the work of
Boden (1990), Wiggins discerns the ingredients of an
exploratory creative system (i.e., a system that selects
and values partial or complete concepts that are found
by traversing a conceptual space) and considers transfor-
mational creativity (i.e., creativity that changes the rules
which define this conceptual space) as exploratory creativ-
ity at the meta-level. Placing systems that can automati-
cally generate stories within this framework explicates de-
sign choices that are sometimes made implicitly. In the
discussion of automated story generation as a creative pro-
cess, the following terms are relevant:

• C: the conceptual space, which in the case of a
story generator can be interpreted as the set of “well-
formed stories” for a given domain.

4http://jena.sourceforge.net
5See http://www.w3.org/TR/rdf-sparql-query/

• R: the constraints that define C, which can be inter-
preted as the rules that determine whether a potential
story is well-formed.

• T : the rules that specify how to traverse the concep-
tual space, which can be seen as the story generation
algorithm.

• E : the constraints that evaluate C, which can be seen
as the rules that determine the quality of the story.

Riedl and Young (2005) discuss story planning in the
context of exploratory creativity. They claim that the eval-
uation criteria E are not generally known or knowable in
the domain of storytelling. The rules that constitute E (i.e.,
define the quality of a story) seem indeed difficult to for-
malize. This is why a creative story generation system
must somehow be set up in such a way that it does not
rely on evaluation by E . The implication is that the sys-
tem must deliver good stories without having knowledge
about why they are good. The input of the system should
already be fertile with narrative potential and the devel-
oper of the system therefore also becomes, in a sense, re-
sponsible for the quality of the produced stories. Taking
this position emphasizes the role of authoring: an effective
story generation process should be transparent enough for
the developer to have an understanding of the relationship
between certain input and their effect on the generated sto-
ries.

However, what is possible to some extent is to deter-
mine R, i.e., the “well-formedness” of the generated sto-
ries. This at least allows a story generator to explore a
space of possible stories. Story generation systems often
use formalizations of R based on findings in narratology
(e.g., Propp) or story understanding (e.g., story grammars
as used by Lang (1999)) . The Fabulist system (Riedl and
Young, 2005) is based on two criteria: character believ-
ability and plot coherence. The first criterium (say, R1)
is formalized by requiring that every action in the story is
intended by a character; the second criterium (say, R2) is
formalized by requiring that every action has a direct or
indirect causal relation to the outcome of the story. Such
a formalized R = R1 ∪ R2 enables the traversal of the
conceptual space by means of a story planner T . The
fulfilment of R2 is a direct result of using a Partial Or-
der, Causal Link planner (POCL) which starts its plan-
ning process from the outcome of the story and plans its
way back satisfying causal requirements. Such a planner
would never incorporate plan steps that have no causal re-
lationship with the outcome.

Our approach to story generation can be viewed as a
process of exploratory creativity. We adopt criteria sim-
ilar to Riedl and Young (2005) for the well-formedness
of a story, and traverse the conceptual space by using au-
tonomous characters that are designed to meet R1, i.e., to
be believable. We hope to meet R2 by equating the out-
come of the story with the outcome of a particular impor-
tant goal of one of the characters. Our approach does not
ensure that R2 is met, since it is easy to imagine other
characters doing things that have no relevance whatso-
ever to the outcome of the chosen goal. But if a certain
story does not meet R2 (i.e., the story contains parts that
have no causal relation to the outcome), certainly we can

Computational Creativity 2007

26

find a subset within the event sequence that does meet R2

(namely, only those parts that are causally related to the
outcome of a certain goal), as long as we make this causal-
ity explicit. For a more detailed explanation of these con-
siderations, see (Swartjes and Theune, 2006).

7.1 The Creative Problem Solver as Creative System

Our creative problem solver is a creative system in its own
right, performing a process of transformational creativity.
In this case, we have different interpretations of Wiggins’
terms:

• C: the conceptual space, being the set of solutions in
terms of narrative cases.

• R: the constraints that define which solutions are in
C, which can be interpreted as the problem descrip-
tion.

• T : the rules that specify how to traverse the concep-
tual space, which in this case is simply the retrieval
query.

• E : the constraints that evaluate C, which can be seen
as the rules that determine the quality of the found
solutions.

A problem description R defines what a concept case
c should look like (thus being a constraint on the concep-
tual space C). We then transform this problem description
into a different one R′ on the assumption that it is a simi-
lar problem description. Effectively we have transformed
the rule that determines what concept cases are in C. This
makes the process one of transformational creativity. And
this process of transformational creativity is indeed an ex-
ploratory creativity process at the meta-level if we con-
sider the problem space R to be the conceptual space of
this meta-creative system: we use creativity heuristics –
the rules of the transformational creativity – to explore the
set of possible rule sets. We enter difficult terrain here as
neither the rules that select appropriate problem descrip-
tions nor the evaluation criteria for these problem descrip-
tions being valued are easy to formalize. We make a (pos-
sibly invalid) assumption that if a problem description R
is appropriate, then the transformed problem description
R′ is also appropriate, by carefully defining the creativity
heuristics. This explicit design effort is in line with Wig-
gins’ view on transformational creativity, where the de-
signer needs to be aware of the rules being applied rather
than rely on serendipity (Wiggins, 2001).

8 Conclusion
The Virtual Storyteller generates stories based on two cri-
teria for their well-formedness: they must portray believ-
able character behaviour and contain coherent plots. Be-
lievable character behaviour is achieved by simulating a
story world in which autonomous character agents try to
achieve their goals and respond emotionally to their en-
vironment. A coherent plot is formed by a subset of the
fabula generated by the simulation that contains a coherent
causal chain (e.g., a chain of events that have contributed

to the outcome of an important goal of one of the charac-
ters).

We extend the design of the Virtual Storyteller with
a creative problem solver that allows for decision making
that falls outside the range of decisions that would have
been made using only autonomous character agents. The
problem solver uses example story pieces that can provide
solutions to decision problems that occur in the course of
the simulation.

Adding the creative problem solver to the Virtual Sto-
ryteller addresses two issues. First of all, a known risk
of using autonomous character behaviour to generate sto-
ries is that no interesting story emerges. We think that
example story pieces, written from a story perspective, al-
low for more interesting stories to happen, since they de-
fine character behaviour in a story context that transcends
the decision space of the characters’ individual behaviour.
Second, the designer of the story generation system is in a
sense responsible for the production of good stories, since
it is difficult to formalize rules that assess the quality of
a story. This stresses the importance of authoring: the
architectures and input knowledge of the story generator
should afford the designer-as-author to express his narra-
tive intent. We believe that example story pieces form an
intuitive way to write such input knowledge.

The creative problem solver performs a process of
transformational creativity to extend the range of use of
these story pieces, by transforming input problems into
problems that are similar in meaning, and adapting found
cases to provide a solution to the original problems. This
process is guided by explicitly defined creativity heuris-
tics. However, the use of such explicitly defined heuris-
tics does not guarantee finding correct solutions. For in-
stance, the assumption that limiting the number of trans-
formations keeps the solution applicable for the problem
at hand, might fail. If the concept of ‘dragon’ is gener-
alized to ‘organism’, the system might come up with a
creative solution where a knight eats a princess to satisfy
his hunger, because it uses a case where a dragon did the
same. Evaluating the solutions and tuning the ontologies,
heuristics and search control to decrease errors is therefore
important. We have designed and partially implemented
the problem solver; future work will involve further im-
plementation and evaluation of the problem solver in the
context of the Virtual Storyteller.

Acknowledgements
This work has been funded by the Strategic Research Ori-
entation NICE of CTIT, the Netherlands.

References
Aylett, R., Louchart, S., Dias, J., Paiva, A., and Vala, M.

(2005). FearNot! - an experiment in emergent narrative.
In Proceedings of the 5th International Workshop on
Intelligent Virtual Agents, pages 305–316.

Boden, M. (1990). The Creative Mind: Myths and Mech-
anisms. Abacus, London.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005).
Named graphs. Journal of Web Semantics, 3(4).

Computational Creativity 2007

27

Cunningham, P. (1998). CBR: strengths and weaknesses.
Technical report, University of Dublin, Computer Sci-
ence Department.

Fairclough, C.R. Cunningham, P. (2004). AI structuralist
storytelling in computer games. Technical report, Uni-
versity of Dublin, Computer Science Department.

Gervás, P., Dı́az-Agudo, B., Peinado, F., and Hervás,
R. (2004). Story plot generation based on CBR.
Knowledge-Based Systems, 18(4-5):235–242.

Lang, R. R. (1999). A declarative model for simple nar-
ratives. In Proceedings of the AAAI Fall Symposium on
Narrative Intelligence.

Liu, H. and Singh, P. (2002). MAKEBELIEVE: Using
commonsense knowledge to generate stories. In Pro-
ceedings of the Eighteenth National Conference on Ar-
tificial Intelligence (AAAI 2002).

Loyall, A. B. (1997). Believable Agents: Building Inter-
active Personalities. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

Meehan, J. (1981). TALE-SPIN. In Schank, R. and Ries-
beck, K., editors, Inside computer understanding - five
programs plus miniatures, pages 197–226. Lawrence
Erlbaum Associates.

Moraes, M. C. and Costa, A. C. d. R. (2004). Imp-BDI:
Improvisational BDI architecture. In Proceedings of
the workshop on Architectures and Methodologies for
Building Agent-Based Learning Environments.

Mueller, E. (1987). Daydreaming and computation: a
computer model of everyday creativity, learning, and
emotions in the human stream of thought. PhD thesis,
University of California.

Peinado, F. and Gervás, P. (2006). Minstrel reloaded:
from the magic of lisp to the formal semantics of OWL.
In Technologies for Interactive Digital Storytelling and
Entertainment (TIDSE).

Propp, V. (1968). Morphology of the folktale. University
of Texas Press.

Riedl, M. and Young, M. (2005). Story planning as ex-
ploratory creativity: Techniques for expanding the nar-
rative search space. In Proceedings of the 2005 IJCAI
Workshop on Computational Creativity.

Swartjes, I. and Theune, M. (2006). A Fabula Model
for Emergent Narrative. In Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE).

Theune, M., Rensen, S., op den Akker, R., Heylen, D., and
Nijholt, A. (2004). Emotional characters for automatic
plot creation. In Technologies for Interactive Digital
Storytelling and Entertainment (TIDSE).

Trabasso, T. and Nickels, M. (1992). The development of
goal plans of action in the narration of a picture story.
Discourse Processes, 15:249–275.

Turner, S. R. (1994). The creative process: a computer
model of storytelling. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Wiggins, G. A. (2001). Towards a more precise charac-
terisation of creativity in AI. In Weber, R. and von

Wangenheim, C. G., editors, Case-Based Reasoning:
Papers from the Workshop Programme at ICCBR’01,
pages 113–120, Washington, DC.

Computational Creativity 2007

28

Session 2

Analogy & Language

Computational Creativity 2007

29

Computational Creativity 2007

30

Statistical Evaluation of Process-Centric Computational Creativity

Diarmuid P. O’Donoghue
Department of Computer Science

NUI Maynooth
Co. Kildare
Ireland

diarmuid.odonoghue@nuim.ie

Abstract
We adopt a process-centric approach to computational
creativity, based on a model of people’s innate ability to
process analogical comparisons. A three-phase model of
analogical reasoning is adapted to function as an anal-
ogy generating machine. It is supplied with two distinct
knowledge-bases containing many domain descriptions,
with the aim of generating novel analogies – potentially
even creative ones. However, because our approach to
computational creativity does not have the usual ”inspir-
ing set”, evaluating its output can not be performed by
comparison to this inspiring set. Our generic approach to
evaluating process-centric computational creativity uses
a number of nonparametric statistical techniques. After
the creative artefacts are generated, human raters assess
these artefacts for the qualities of creativity (quality, nov-
elty etc). We describe the results of two experiments that
were conducted on these two collections of domains. The
analogies generated on the two collections are analysed
and difference in the two result sets are assessed. We ar-
gue that true creativity can only be assessed after the cre-
ative artefacts are generated. Evaluating creativity only by
reference to the inspiring set runs the risk of overlooking
creative artefacts that differ from the inspiring set - and
may under-estimate a model’s creativity.

Keywords: Analogical Creativity, Analogy Generation,
Evaluation, Nonparametric Statistics

1 Introduction
Computational creativity frequently uses an ”inspiring
set” of creative artefacts (music, images, poems etc) both
to drive the model and to act as a basis for its evalua-
tion. This artefact-centric approach to computational cre-
ativity contrasts with the process-centric approach in this
paper and elsewhere (O’Donoghue, 1997; Gomes et al.,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

2003; Veale, 2004; O’Donoghue et al., 2006). This paper
describes an approach to computational creativity that is
based on people’s innate ability to understand analogical
comparisons. This paper builds upon computational mod-
els of the analogical reasoning process.

Analogical comparisons are often cited as a driving
force behind creativity, providing new perspectives on
some previously known concepts (Boden, 1992). Creativ-
ity using analogies is strongly associated with science and
scientific advancement. Pierre Curie and colleagues de-
liberately used analogies as a technique for generating hy-
potheses which they later tested (Curie, 1923). Hoffman
(1995) and Brown (2003) detail the role that analogies
played in many recorded scientific breakthroughs. Dun-
bar (2001) and Dunbar and Blanchette (2001) note that
experts display a great ability to generate and use novel
analogies when dealing with situations that arise in their
normal work environment (this contrasts with the rare use
of analogies by non-experts when presented with tester-
determined analogy problems). Koestler (1964) was also
among those who account for creativity as the juxtaposi-
tion of two very different sets of ideas.

In essence, an analogy is a comparison between two
concepts (source and target) (Gentner, 1983), such that
the source highlights particular aspects of the target and
suggests new inferences about that target. Every ana-
logical comparison has two effects. Firstly, it highlights
an existing non-obvious similarity between two concepts.
Secondly, it then extends this similarity by transferring
information from one concept to the other, adding new
information to the target. In creative analogies (Boden,
1992; Eysenck and Keane, 1995) a strange source domain
conjures up a revolutionary new conceptualisation of the
target, suggesting inferences that explain some previously
unexplained or unnoticed phenomena.

Computational modelling of the analogy process has
focused primarily on the central mapping phase (Keane
et al., 1994) ; see (French, 2002) for a review). Sur-
prisingly, only a few models have been developed of
the previous retrieval phase (Thagard et al., 1990; For-
bus et al., 1995; Plate, 1998; O’Donoghue and Crean,
2002; Gomes et al., 2003) or of the subsequent validation
phase (Falkenhainer et al., 1989). However, no combined
retrieval–mapping–validation model has been described
and evaluated. In this paper we investigate a three-phase
model and evaluate its potential for finding and assess-

Computational Creativity 2007

31

ing novel analogies - potentially even identifying creative
ones.

We should not be overly proscriptive in how we assess
computational creativity, unpredictability being a quality
that is often associated with creativity. Any creativity
model that is assessed solely by comparison to an inspir-
ing set may inadvertently overlook outputs that are con-
sidered creative when assessed independently of that in-
spiring set. True creativity can only be assessed post hoc.

The remainder of this paper is structured as follows.
First we review computational creativity, distinguishing
between the traditional ”inspiring set” approach and our
”process-centric” approach. We then describe our com-
putational model for generating and evaluating analogi-
cal comparisons. We describe the problem of assessing
our model in the absence of an inspiring set. We de-
scribe a number of statistical techniques that serve to eval-
uate process-centric creativity models. We then present
and analyse the analogies generated by our model before
drawing some final conclusions.

2 Computational Creativity
Ritchie (2001) describes and formalises the typical pro-
cess by which most computational creativity programs are
constructed. The process starts with basic items which are
items of the type to be produced by the program (poems,
music, images etc). A subset of these items is selected,
taking into account the ratings and values associate with
the basic items - creating the inspiring set. Following this,
the program is constructed and executed for a range of pa-
rameters. We characterise this approach to computational
creativity as artefact-centric creativity.

2.1 Process-Centric Creativity: Beyond the
Inspiring Set

Our approach differs from standard computational creativ-
ity in a number of ways. First, we start with a compu-
tational model of people’s ability to reason analogically.
Our model is based on many years of focused work on the
analogy process by many cognitive scientists. Our aim
is not only to generate creative artefacts (analogies), but
to do so in a cognitively plausible manner. We charac-
terise this approach to computational creativity as process-
centric creativity.

We reject any suggestion that producing creative
analogies is somehow driven by an ”inspiring set” of pre-
vious creative analogies. We do not wish to produce
analogies that are similar to existing analogies. What we
are searching for is analogies that produce the same effect,
of explaining or highlight some facts. As noted Aristotle’s
Poetics1 (Chapter 22) analogy is ”one thing that cannot be
learnt from others”.

A second difference with standard computational cre-
ativity is that we wish to produce an unconstrained model
of creativity. We may expect our model to (re)generate
a few well-known creative analogies (like Rutherford’s

1Aristotle made this statement about metaphor which is very
similar to analogy, both being centred on a core mapping phase.

solar-system:atom analogy), but we do not consider iden-
tifying these as true examples of creativity. That is be-
cause these are well studied analogies and they have been
described in the literature in such a way as to maximise the
similarity between the two domains. This has two impli-
cations. Firstly the expert’s intricate knowledge is trans-
lated into a greatly simplified format, where the same re-
lations are used to describe the source and target domains.
Retrieving the simplified source can use identical token
matching (used by MAC/FAC (Forbus et al., 1995)), but
this would prove far less effective on the original prob-
lem as it was then understood. Even the semantic similar-
ity metric used by ARCS (Thagard et al., 1990) may not
provide a cue to retrieval. Secondly, the topology of the
simplified domains are (generally) also identical, allowing
the graph structure of the domains to play a significant role
in retrieval (Plate, 1998; O’Donoghue and Crean, 2002;
Gomes et al., 2003). Thus, identifying these analogies in-
directly makes use of their original discovery - and does
not require the same creative insight that is associated with
Rutherford and others.

For example, O’Donoghue (1997) describes three
successive problems that Kekule must have overcome in
re-structuring the carbon-chain analogy into the famous
carbon-ring analogy. Attempts were made to describe
the domains in a manner more like the common under-
standing before Rutherford’s famous insight - using the
then dominant ”plum-pudding” interpretation of the atom.
However, the success of these attempts varied widely de-
pending upon two factors. Firstly, the topological simi-
larity of the resulting domain descriptions as the CWSG
inference algorithm (Holyoak et al., 1994) generates in-
ferences as a form of graph-completion process. Sec-
ondly, identicality or semantic similarity between the re-
lations used to describe the source and target domains
greatly influenced the likelihood of the correct analogy
being drawn.

A creativity model should identify any additional cre-
ative analogies that might arise - ones that were not ex-
pected to be found. Thus, if one source domain offered
some novel and useful inferences about some target do-
main, this p-creative (Boden, 1992) comparison should
also be identified as creative.

A third difference with standard computational cre-
ativity arises from the fact that we do not begin with an
inspiring set, as generated artefacts (the analogies) can not
be evaluated by comparison with that inspiring set. Any
process-centric model of creativity must be capable of dif-
ferentiating between creative and non-creative artefacts,
testing artefacts for the qualities associated with creativ-
ity; novelty, quality etc (Ritchie, 2001). However, this
still leaves us with the task of assessing the goodness of
the generated artefacts. Were any of the generated arte-
facts considered creative by humans?

Much of the remainder of this paper concerns this third
point, evaluating the output of process-centric models of
creativity. In the next section we examine our creative
analogy model before turning our attention to analysing
the analogies that were created.

Computational Creativity 2007

32

3 A Creative Analogy Machine
Wallas (1926) proposed a five-phase model of the cre-
ative process, composed of the phases: preparation, in-
cubation, intimation, illumination and verification. This
phase-model of creativity bears a striking similarity to
many phase-models of the analogy process. Keane et al.
(1994) identify a five-phase model of analogy composed
of representation, retrieval, mapping, validation and in-
duction. We note a particular similarity between the last
three phases of Wallas’ model and the central three phases
of Keane’s model. That is, these phases involve finding
inspiration, examining the implications of that inspiration
and assessing its outcome. This paper concerns the use of
a computational model of analogy, consisting of the three
phases of retrieval, mapping and validation2.

As we shall see, our three-phase model is capable
of finding novel analogies and of generating novel infer-
ences. In this paper our focus is on assessing the creative
potential of this multi-phase model and to do this we pro-
vide it with a knowledge-base containing a variety of do-
main descriptions and examine the analogies that are gen-
erated.

To test the model’s creative potential we decided to
generate the maximum number of analogies that can be
derived from a given set of domain descriptions. Of course
in a more realistic scenario, one specific domain would
probably be selected as a target problem, but there were
two reasons for not doing so. First there was no reason
to select one domain over all others as the target problem,
particularly in the absence of other facets of intelligence
or domain-specific expertise. Secondly, we are attempting
to explore the creative potential of a three-phase model
of analogy, we are not attempting to mimic the way one
specific creative analogy was discovered.

The results described in Sections 5 and 6 of this pa-
per were generated under the following scenario. The re-
trieval phase selects each domain from memory in turn,
treating it as a target problem. Then for each of these tar-
gets, the model retrieves every other domain in turn and
treats each as a candidate source. For each resulting anal-
ogy, the inter-domainmapping is generated and the result-
ing inferences were generated, evaluated and recorded. So
for a memory containing n domains, the number of analo-
gies generated is proportional to n2.

3.1 The Three-Phase Analogy Model

While the focus in this paper is on assessing computer
generated analogies, we now provide some details on the
computational model itself. In principle however, any
mapping and inference models could be used. First, re-
trieval was a simple exhaustive process that selected each
domain and passed it as a candidate source to the (current)
target.

The mapping model took each source and target in
turn, identifying the inter-domain mapping for that ana-
logical comparison. Like many mapping models (Keane
and Brayshaw, 1988; Keane et al., 1994; Forbus et al.,

2Validation differs from verification in that it is a more
broadly applicable, but less intricate means of assessing the qual-
ity of analogies and their inferences.

1994; O’Donoghue et al., 2006), our mapping model fol-
lowed the incremental mapping approach. Before being
processed, the model identified the ”level” of each rela-
tion. Relations taking objects as arguments were defined
as level 1, a relation taking two level n relations as argu-
ments was defined as level n+1.

The model then identified the ”root” predicates in both
the source and target domains (predicates forming the root
of tree structures). A ”root mapping” was identified be-
tween a root in the target and a predicate at the same level
in the source - with a preference that this be a root pred-
icate. These root mappings were then elaborated to in-
clude all compatible inter-domain mappings. Our map-
ping model employed Gentner (1983)’s predicate identi-
cality constraint as a preference rather than a hard restric-
tion.

Generating inferences followed the CWSG (Holyoak
et al., 1994) pattern completion algorithm. These infer-
ences were then validated using ”functionally relevant at-
tributes” (Keane, 1985; Eskridge, 1994) that were asso-
ciated with each first-order relational predicate. A sim-
ple taxonomy supported this synta-semantic process. This
validation process contrasts with the more detailed but
domain-specific ”verification” process used by Falken-
hainer (1987).

Much of this paper is devoted to analyzing the com-
puter generated analogies that were produced by our
model. Our analyses focus on the issue as to whether our
model does actually generate inferences, which display
the hallmarks of creativity, such as novelty and quality
(Colton and Steel, 1999; Ritchie, 2001). Rather than rely-
ing on intuition, we wish to statistically assess our model
by examining the artefacts it produces.

3.2 Two Collections of Test Data

In order to test our model, we need domains that the
model may process. Two distinct collections of do-
mains were used to conduct two separate computa-
tional experiments. The first collection was developed
by Veale (1995) and held 14 domains, each contain-
ing from 10 to over 100 predicates. The Professions
domains contained descriptions of various professions
(butcher, general, politician etc) and though it was de-
signed to compare models of metaphoric mapping, this
use has been extended in this paper. Each domain used
between 6 and 15 distinct relational predicates (ignor-
ing duplicates). So this collection consisted of large
domains described using very general relational predi-
cates - (depend person personal-health) and
(depend 18-th-century-general army).

The second collection was developed specifically for
this project and contains 81 smaller domains, rang-
ing in size from 1 to 15 predicates. These ”Sundry
domains” were described by much more specific rela-
tions - (capture army fortress) and (bounce
golf-ball golf-green). This collection also con-
tained many domains found in the analogy literature,
including Rutherford’s solar-system:atom analogy and
(Duncker, 1945) tumour:fortress analogy. These smaller
domains used an average of M=3.48 distinct relational

Computational Creativity 2007

33

predicates per domain.

3.3 Initial Testing

Initial testing of our model on a few domain descriptions
revealed a number of findings. First, many analogical
comparisons yielded no inferences. This occurred when
no appropriate inter-domain mapping could be identified
and when the source domain contained no additional ma-
terial to be transferred to the target.

A second finding from our initial tests revealed that
almost every inference generated was a novel inference.
That is, almost none of the generated inferences were
identical to a predicate already contained in the knowl-
edge base. The majority of inferences (over 99%) were
formed from a novel combination of a relational predicate
plus its two arguments. While we have no measure of
the degree of novelty of these predicates, such a low ra-
tio of duplicates strongly indicates that the generated arte-
facts should be considered novel. To remove any nonsense
inferences that might be generated eg (sleep idea
furiously), the validation model classified each in-
ference as either valid or invalid. However, we must now
focus on the task of assessing the goodness of our model.
Was it successful in generating creative artefacts? Did
the validation model successfully remove nonsense infer-
ences? Was validation even necessary?

4 Assessing Novel Artefacts
Computational modelling must specify the processes and
representations that underlie creativity, it must also gener-
ate creative artefacts. These artefacts must thus display
the qualities associated with creativity: quality, novelty
(Ritchie, 2001), plausibility, surprisingness, applicability,
utility etc. (Colton and Steel, 1999). The main complica-
tion in assessing these qualities arises from the fact that
these artefacts are also novel and this novelty has some
surprising implications for how the other qualities may be
assessed.

Firstly, we cannot use a direct comparison between
the novel artefacts and some known set of artefacts (eg
the inspiring set). Thus, assessment must be conducted
in other terms. Gomes et al. (2003) assess the quality
of novel artefacts in terms of the quantity of identified
errors in the generated artefact. Veale (2004) compares
the quality of generated artefacts to an independent re-
sources (from WordNet). Falkenhainer (1987) ”verifies”
analogy-based physical models in terms of how well the
new model matches (or can be adapted to) other known
facts and rules. In this paper we present a more general
approach to the analysis of creative artefacts. Like much
of cognitive science we use human evaluators to assess the
goodness of the artefacts produced.

4.1 Statistical Analysis

A common methodology in cognitive science is to exam-
ine people’s performance at some task. Using this evi-
dence and other information, an hypothesis (often instan-
tiated as a computational model) is created of their perfor-
mance at that task. The goodness of the hypothesis and the

model is then assessed, often using parametric statistical
techniques. Among the parametric statistics used are the
Pearson product-moment correlation and ANOVA (analy-
sis of variance) tests.

However, a number of differences mean that these sta-
tistical techniques can not be used to assess computational
creativity. Firstly, we are not trying to compare the perfor-
mance of a set of people to the model’s performance at the
same task. So, assumptions about the frequency distribu-
tions that underlie many of these statistical techniques do
not hold. Secondly, cognitive science assesses how well
a model accounts for observed phenomena. It does not
normally attempt to identify specific qualities in computer
generated items.

4.1.1 Non-Parametric Statistics

To assess our model we use non-parametric statistics.
Non-parametric (or distribution free) statistics make no
assumptions about the frequency distribution of the vari-
ables being assessed. Thus the model’s structure is not
specified beforehand but is derived from the data itself.
While non-parametric tests have less power than paramet-
ric tests, they are generally more robust.

While it was intended to use (human) raters to asses
the goodness of the generated artefacts post hoc, some ad-
ditional constraints were also imposed by what can be ex-
pected of raters. Newly generated items were to be eval-
uated independently of the domain descriptions, because
presenting raters with collection of up to 100 predicates
was not thought likely to be successful. Our raters did not
evaluate the analogical comparisons themselves, again as
rating large pairings of predicates was considered too dif-
ficult. We evaluated the analogies indirectly, based on the
inferences they mandated. Again inferences were evalu-
ated in isolation and not as collections of predicates, partly
because most inferences occurred as isolated predicates.
Furthermore, assessing collections of predicates would re-
quire knowing the prior context – again involving reading
larg(er) collections of predicates.

In this paper we make use of two different non-
parametric tests; McNemar’s test and the Mann-Whitney
test. Within the context of this paper, the central differ-
ence between them is that the first test compares two bi-
nary classifications, while the second test compares a bi-
nary and an ordinal classification.

4.2 McNemar’s Test

In this instance we use a McNemar’s test to test for the
presence of an hypotheses, that our model generated arte-
facts displaying some of the attributes of creativity (see
Hinkle et al. (1994) for details on the McNemar’s test). As
stated earlier, virtually all inferences were already known
to be novel. So, McNemar’s test was used to assess the
quality (Ritchie, 2001) of inferences. More specifically,
we assess the validity of the analogically generated infer-
ences. (In this paper evaluation is independent of the driv-
ing analogical comparison).

More specifically, this test will allow us to test the null
hypothesis, that there will be an equal number valid infer-
ences rated-bad and invalid inferences rated-good.

Computational Creativity 2007

34

We start by recording the classifications assigned to
each inference by our computational model. These infer-
ences were then given to human raters for separate assess-
ment, so the raters were unaware of the computers clas-
sification of these items. The assigned classes are then
compared to the human ratings of these materials (see Ta-
ble 1). What we would like is total agreement between the
assigned classifications and the human ratings.

Table 1: Confusion Matrix of Results
Assigned Human Human Total
Class Rating Rating

+ -
Valid + a b a + b
Invalid - c d c + d

In assessing these data, McNemar’s test focuses on the
disagreement between the categorisation and the human
rating (Hinkle et al., 1994).

χ2 =
(b − c)2

(b + c)
(1)

McNemar’s test will help us decide if our model pro-
duces valid artefacts that people think of as valid. That
is, people agree that what the model categorises as a valid
inference is indeed a valid inference. People also agree
that the invalid inferences are invalid. Thus, the quality
of generated artefacts is assessed in terms of their validity
(novelty being assessed independently).

4.3 Mann-Whitney-Wilcoxon Test

To further analyse our results, a Mann-
Whitney(Wilcoxon) test was also performed on the
data. The Mann-Whitney-Wilcoxon test improves upon
the McNemar’s test by taking into account the ordinal
scale used by the human raters to rate the novel artefacts.
(Thus, the McNeemar’s test is included in this paper for
illustrative purposes). The Mann-Whitney Test is one of
the most powerful of the nonparametric tests.

Mann-Whitney tests assesses if two samples come
from the same distribution. The null hypothesis is that the
two samples are from the same population and that their
probability distributions are the same.

The two categories (valid and invalid) are combined
and sorted by their rating score. The combined data are
ranked and rank-sum for each category is computed (R 1

and R2). Tied results are given the average value for that
ranking group. Equation 2 details how U1 value is calcu-
lated (an equivalent equation exists forU2 andR2) with U
being chosen as the smaller of U1 and U2.

U1 = mn +
m(m + 1)

2
− R1 (2)

where m and n are the numbers of items in the two cat-
egories. For large sample sizes (n>20) an approximation
can be used. Additionally, because of the presence of a
large number of tied rankings among our results, we made
use of a further modification to the basic formula that in-
cludes a correction factor to account for the presence of

these tied rankings. Further details on the Mann-Whitney
test can be found in (Siegel and Castellan, 1988).

z = Wx + .5 − n(N + 1)/2
[mn/N(N − 1)][(N3 − N)/12 − Σg

j=1(t3j − tj)/12]
(3)

where N=m+n, tj is the number of tied ranks in the jth
grouping,Wx is the sum of the ranks for the first category
and g is the number of groupings of different tied ranks.

5 Analysis of Results
In this section we describe the results of a number of tests
that were conducted on our model. A large number of
analogies were generated and then assessed by examining
their inferences. The quality of the resulting inferences is
examined using the tests mentioned above. Additionally,
some factors relating to the representation of information
arise from these results, so some facets of the domain de-
scriptions are also examined.

5.1 Experimental Set-Up

A memory was created containing all domains from two
knowledge bases (described below). Each of these do-
mains were taken in turn to serve as the target problem.
Every domain was taken in turn to act as a candidate
source for that target and the inter-domain mapping and
inferences were generated (Holyoak et al., 1994). These
inferences were then passed to a validation process, which
categorised all inferences as either valid or invalid.

5.1.1 Participants and Design

Two raters were used and both raters were familiar with
predicate calculus representation. All data were presented
in a random order.

5.1.2 Procedure

Unrated inferences were given to human subjects who
were asked to give each predicate a rating between 1 and
7. A rating of 1 represented a predicate that could not
be considered credible under any circumstance, while a
rating of 7 represented a predicate that could certainly be
considered credible in some circumstance. A rating of 4
represented a predicate that was not obviously either cred-
ible or not credible in any circumstance.

The materials used for Experiment 1 was the infer-
ences generated on the Professions domains. The materi-
als used for Experiment 2 were the inferences generated
on the Sundry domains. The same experimental set-up
was used to produce all results.

5.2 McNeemar’s Analysis

In this section we present the results of a McNeemar’s
analysis of the experimental data. We first present the re-
sults for the Professions domains. Next we present the
results from the Sundry domains and then we compare the
two results. The 7 point rating was then mapped onto a
binary scale of Rated-valid or Rated-invalid, for use in the
McNemar’s test.

Computational Creativity 2007

35

5.2.1 Experiment 1

The 14 domains from the first collection generated 196
analogies, representing each domain mapped with all
other domains - including itself. The model generated a
total of 175 inferences and classified 151 (86.2%) as valid,
and 24 (13.7%) as invalid. Of the 175 generated infer-
ences, 40 (approximately 1/4) were randomly selected for
rating.

The average rating awarded to predicates that the
model categorised as valid was M=2.77 (SD=1.98), while
the average rating awarded to the invalid predicates was
M=1.58 (SD=1.06). So as expected, the valid predicates
were generally rated better than the invalid predicates.

Of the 20 valid predicates, 6 (30%) were rated as valid
or potentially valid (rated>=4) by the raters, so 14 (70%)
of the valid category were actually deemed invalid by the
human raters. Of the 20 invalid predicates 19 (95%) were
rated as invalid and 1 (5%) was rated as valid. Thus, the
model appears to be better at identifying invalid predicates
than it is at recognising valid predicates. This may be ex-
plained by the fact that predicates are only categorised as
invalid when some specific violation of the functionally
relevant attributes is identified. Otherwise, predicates are
assumed to be valid.

Table 2: Assessing Generated Analogies - Collection 1
Assigned Rated Rated Total
Class Valid Invalid
Valid 3(20%) 12(80%) 15(100%)
Invalid 1(4.2%) 18(94.7%) 19(100%)

The first assessment of our computer generated items
is summarised by a McNemar’s test. The McNemar’s
test compared the classifications of the computer gener-
ated items to categorisations awarded by human raters to
the same items. In this case the null hypotheses states
there will be an equal number of inferences in the Invalid-
RatedGood and the Valid-RatedBad conditions. The re-
sults were: #Invalid-RatedGood = 1, #Valid-RatedBad =
14,K2=11.26 and taking α = 0.05 the null hypothesis can
be rejected. p <= 0.001 showing strong agreement be-
tween the two ratings, indicating that the model correctly
interpreted its own output. Thus, the model was success-
ful in generating quality artefacts that were judged to be
valid by human raters.

5.2.2 Experiment 2

The second collection of 81 domains generated a total
of 6561 analogies, yielding 3793 inferred predicates. Of
these predicates, 2158 (56.9%) were classified as valid
and 1635 (43.1%) inferences were categorised as invalid
predicates.

216 valid predicates and 50 invalid predicates were
randomly selected for human rating (these quantities be-
ing related to the techniquewhich ensured a random selec-
tion was made). Of the 216 valid predicates, 103 (47.5%)
were rated as valid or potentially valid by the raters, so
94 (43.5%) of the valid category were actually deemed
invalid by the human raters. Of the 50 invalid predicates

45 (90%) were rated as invalid and 5 (10%) were rated as
valid.

The average rating awarded to the valid predicates was
M=3.47 (SD=2.35), for the invalid predicates wasM=1.59
(SD=1.42). Thus as expected, the invalid predicates re-
ceived significantly lower ratings than the valid predicates.
As with Experiment 1, the invalid category is recognised
with greater accuracy than the valid category.

Table 3: Assessing Generated Analogies - Collection 2
Assigned Rated Rated Total
Class Valid Invalid
Valid 94(43.5%) 122(56.5%) 216(100%)
Invalid 5(14%) 45(86%) 50(100%)

A McNemar’s test was also performed to compare the
model’s classifications to the categorisations awarded by
the raters. The results were: #Invalid-RatedGood = 5,
#Valid-RatedBad = 122, K 2= 107.78, α = 0.05 so again
the null hypothesis can be rejected. p <= 0.0001 show-
ing a very strong agreement between the ratings and the
assigned category.

5.2.3 Discussion on Experiments 1 and 2

McNemar’s test allows us to reliably reject the null hy-
pothesis. However, a comparison between the two exper-
iments provides greater insight.

The validation model is being very cautious about cat-
egorising relations as invalid, only doing so when there is
reasonable evidence. If there is doubt about a relation’s
validity, it is passed as potentially valid. Thus, inferences
assigned to the valid class consist of true valid inferences
as well as invalid inferences on which there was insuffi-
cient information.

The average rating for the valid inferences in the first
collection (M=2.77, SD=1.98) was significantly lower
than the second (M=3.47, SD=2.35). Thus, inferences
were validated less successfully on the first collection
than on the second collection. However, the proportion
of Valid-RatedGood = 20% in the first collection was
significantly lower than on the second collection Valid-
RatedGood = 43%. This can be attributed to the fact that
the first collection used more general relational predicates,
which are more difficult to falsify. Secondly, the second
collection made greater use of relational predicates de-
fined by functionally relevant attributes that supported the
classification process.

In conclusion, it appears that the validation process is
primarily responsible for the quality of inferences in the
valid and invalid categories. Domains that are described
using more specific relations (from lower-down a taxon-
omy) allow the validation process to operate more accu-
rately.

5.3 Mann-Whitney(Wilcoxon) Analysis

AMann-Whitney analysis waas conducted on our results.
As stated earlier, the main results below counter for the
presence of large number of tied results. The presence of

Computational Creativity 2007

36

tied rankings was a greater factor in the analogies gener-
ated from the second collection than on the first collection
of domains.

We first present the results for the Professions domains
and then results from the Sundry domains before compar-
ing the two results.

The materials and method used in this experiment
were the same as in the previous analysis.

The null hypothesis tested in this section is that the
two samples are from the same population and that their
probability distributions are the same.

5.3.1 Experiment 3

With the formula given above, the results for our Mann-
Whitney test are : R1 323.5, R2 498, U = 112, z=2.3
(p1 <0.0107, p2 <0.0214).

However, when we use the Mann-Whitney test that is
adjusted for the presence of many tied results. z=2.49,
(p1 <0.0064, p2 <0.02).

This result allow us reject the null hypothesis, that the
valid and invalid categories are drawn from the same pop-
ulation. We can thus adopt the alternate hypothesis that
the mean of the valid category is greater than the invalid
category. Thus our analogy model is indeed generating
quality analogical inferences.

5.3.2 Experiment 4

With the formula given above, the results for our Mann-
Whitney test are : R1 30057.5, R2 5414, U = 4147.5,
z=2.55 (p1 <0.005, p2 <0.0108).

However, if we include the correction factor to ac-
count for the presence of tide results in our ranking, then
z = 5.92 (p1 <0.0001, p2 <0.0001).

Thus we reject the null hypothesis in favour of the al-
ternate hypothesis, which is that the median of the valid
inferences is greater than the median of if invalid infer-
ences. Alternatively we may state that the valid inferences
have stochastically greater ratings than the invalid infer-
ences.

Again this was the hoped for result and shows that our
analogy model does generate quality inferences.

5.3.3 Discussion on Experiments 3 and 4

As expected, these results indicate that the null hypothesis
can be rejected. Again, the results from the Assorted col-
lection given graeter confidence for this conclusion than
do the Professions results.

5.4 Known Creative Analogies

For clarity, we shall report separately on the accuracy of
our model to re-generate known creative analogies. As
discussed in Section 2.1 we do not consider the following
results to be examples of true creativity - because the do-
main descriptions do not accurately reflect the problems
that were creatively solved in each instance. However,
they do provide some positive evidence for the creative
potential of the analogy model.

Because the creative analogies were known a priori,
we do not need to use McNemar’s test. The model gener-
ated and validated the correct inferences for 7 of 10 (70%)

(known) creative analogies and thus was quite successful
in (re)generating these analogies.

While no new creative analogies were discovered on
these knowledge-bases, we believe that creative analogies
could be discovered by our model. These results show us
that creative analogies occur exceptionally rarely. A chal-
lenge for the future is to acquire more domain descriptions
to see if any creative analogies are generated. A related
challenge is to improve the evaluation process in order to
focus on the more promising and creative analogical com-
parisons.

6 Conclusion
The traditional approach to computational creativity at-
tempts to generate new items belonging to an ”inspiring
set”. But this inspiring set also plays a role in evaluating
the creativity model.

We describe an alternative process-centric approach to
computational creativity that does not utilise an inspring
set. Thus, evaluating these models must rely on alternative
methods. This paper describes two nonparametric statis-
tics techniques, namely McNeemar’s test and the Mann-
Whitney test. These tests evaluate artefacts that have been
rated on binary and ordinal scales respectively.

These statistical techniques were used to evaluate a
model of analogical reasoning that has been adapted to op-
erate as an analogy generating machine. This model en-
compassed the three core phases in the analogy process,
namely: retrieval, mapping and validation. The model
was used on a knowledge base containing two distinct col-
lections of domains, to assess its performance and see if
any novel or creative analogies might be generated. Ev-
ery domain was used as a target in conjunction with each
other candidate source domain. This generated the maxi-
mum number of analogical inferences allowing us to test
the creative potential of our model.

The resulting inferences were evaluated by the model
itself, selecting inferences of greater quality. These infer-
ences were recorded and given to human raters who as-
sessed the accuracy of the analogy production system. A
McNemar’s test was used to compare and assess the au-
tomatically assigned classification against human ratings
of the same artefacts. This illustrated that the model was
successful in generating quality inferences.

Known examples of creative analogies were identified
as expected (such as Rutherford’s solar-system:atom anal-
ogy). However, such examples are not considered as truly
creative as they have been described in such a way as to
maximise the similarity between the two domains mak-
ing their re-discovery almost inevitable. No truly creative
analogies were identified among the subset of inferences
rated by the raters.

Interesting differences between the two collections
produced differences in the generated results. The collec-
tion using more general (or abstract) relational-predicates
made generating the mapping easier, but made valida-
tion less accurate. In contrast, the collection using more
specific relational-predicates made identifying the inter-
domain mapping more difficult, but allowed more accu-
rate validation of inferences.

Computational Creativity 2007

37

As far as we know, this is the first work towards au-
tomatically generating analogies. While the analogies re-
ported in this paper were not found to be creative, we be-
lieve a larger knowledege-base will provide more fruitful
results. More accurate and complete models of each phase
of analogy may help improve the quality of results pro-
duced by the model. Modifying the model’s parameters
may even produce a model with a greater creative capac-
ity than human analogisers.

Acknowledgements
My sincere thanks to the anonymous reviewers of IJWCC
2007 (one in particular) for helpful comments and sugges-
tions on this paper.

References
Boden, M. A. (1992). The Creative Mind. Abacus.
Brown, T. L. (2003). Making Truth: Metaphor in Science.
University of Illinois Press, New York, USA.

Colton, S. and Steel, G. (1999). Artificial intelligence and
scientific creativity. Artificial Intelligence and the Study
of Behaviour Quarterly, 102.

Curie, M. (1923). Pierre Curie. Macmillan.
Dunbar, K. (2001). The Analogical Mind, chapter The
Analogical Paradox: Why Analogy is so Easy in Nat-
uralistic Settings, Yet so Difficult in the Psychological
Laboratory.

Dunbar, K. and Blanchette, I. (2001). The in vivo/in vitro
approach to cognition: The case of analogy. Trends in
Cognitive Sciences, 5(8):334–339.

Duncker, K. (1945). On problem solving. Psychological
Monographs, 5:whole no. 270.

Eskridge, T. C. (1994). Analogy, Metaphor and Remind-
ing, chapter A Hybrid Model of Continuous Analogical
Reasoning. Ablex, Norwood, NJ.

Eysenck, M. W. and Keane, M. T. (1995). Cognitive Psy-
chology. Taylor Francis, Erlbaum, UK.

Falkenhainer, B. (1987). An examination of the third stage
of the analogy process: Verification-based analogical
learning. In Proc. IJCAI, pages 260–263.

Falkenhainer, B., Forbus, K., and Gentner, D. (1989). The
structure mapping engine: Algorithm and examples.
Artificial Intelligence, 41:1–63.

Forbus, K., Ferguson, R., and Gentner, D. (1994). In-
cremental structure-mapping. In Proc. 16th Cognitive
Science Society, pages 313–318.

Forbus, K., Gentner, D., and K., L. (1995). Mac/fac: A
model of similarity-based retrieval. Cognitive Science,
19:141–205.

French, R. M. (2002). The comptational modeling
of analogy-making. Trends in Cognitive Sciences,
6(5):200–205.

Gentner, D. (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7:155–170.

Gomes, P., Seco, N., Pereira, F. C., Paiva, P., Carreiro, P.,
Ferreira, J. L., and Bento, C. (2003). The importance
of retrieval in creative design analogies. In Proc. IJCAI
3rd Workshop on Creative Systems, Acapulco, Mexico.

Hinkle, D. E., Wierrsma, W., and Jurs, S. G. (1994). Ap-
plied Statistics for the Behavioral Sciences. Houghton
Mifflin, Boston, USA.

Hoffman, R. (1995). Monster analogies. AI-Magazine,
3:11–35.

Holyoak, K., Novick, L., and E., M. (1994). Analogy,
Metaphor and Reminding, chapter Component Pro-
cesses in Analogical Transfer, pages 113–180. Ablex
Norwoord, N.J., USA.

Keane, M., Ledgeway, T., and Duff, S. (1994). Constraints
on analogical mapping: A comparison of three models.
Cognitive Science, 18:387–438.

Keane, M. T. (1985). On drawing analogies when solving
problem:. British Journal of Psychology, 76:449–458.

Keane, M. T. and Brayshaw, M. (1988). Third European
Working Session onMachine Learning, chapter Indirect
Analogical Mapping. Pitman, London, UK.

Koestler, A. (1964). The Art of Creation, volume 1. Pi-
cador, London.

O’Donoghue, D. (1997). Towards a computational model
of creative reasoning. In Conference on Computational
Models of Creative Cognition (CMOCC), Dublin City
University, Ireland.

O’Donoghue, D. and Crean, B. (2002). Retrieving cre-
ative analogies. In ECAI - Workshop on Creative Sys-
tems, pages 56–66, Lyon, France.

O’Donoghue, D. P., Bohan, A., and Keane, M. (2006).
Seeing things : Inventive reasoning with geometric
analogies and topographic maps. New Generation
Computing, 24:267–288.

Plate, T. (1998). Structured operations with distributed
vector representations. In Advances in Analogy Re-
search, Sofia, Bulgaria,.

Ritchie, G. (2001). Assessing creativity. In Proc. AlSB
Symposium on AI and Creativity, pages 3–11, York,
England.

Siegel, S. and Castellan, J. N. (1988). Nonparametric
Statistics. McGraw-Hill.

Thagard, P., Holyoak, K. J., Nelson, G., and Gochfeld, D.
(1990). Analogue retrieval by constraint satisfaction.
Artificial Intelligence, 46:259–310.

Veale, T. (1995). Metaphor, Memory and Meaning. Ph.d.
diss., Trinity College, Dublin.

Veale, T. (2004). Pathways to creativity in lexical ontol-
ogy. In Proc. 2nd Global WordNet Conference.

Wallas, G. (1926). The Art of Thought, volume 1. Cape,
London.

Computational Creativity 2007

38

A GENERATIVE GRAMMAR
FOR PRE-COLUMBIAN ARTISTIC PRODUCTION:

THE CASE OF EL TAJÍN STYLE

Manuel Álvarez Cos
U.H. Loma Hermosa 73c- 406,
Col. Loma Hermosa, c.p.11200,

México, D.F, México
arqueomac@yahoo.com

Rafael Pérez y Pérez
Departamento de

Tecnologı́as de la Información,
Universidad Autónoma

Metropolitana (UAM-Cuajimalpa)
Avenida Constituyentes 1054,

Col. Lomas Altas, Miguel Hidalgo,
México, D. F., C.P. 11950

rperez@correo.cua.uam.mx

Atocha Aliseda Llera
Instituto de

Investigaciones Filosóficas,
Universidad Nacional

Autónoma de México (UNAM)
Circuito Mario de la Cueva, s/n.
Ciudad Universitaria México,

c.p. 04510, México, D.F., México
atocha@servidor.unam.mx

Abstract
This paper presents a shape grammar for the production
and recognition of images conformed to the artistic style
of El Tajı́n, an archaeological city in México. After an in-
troductory review of previous archaeological and compu-
tational works, the paper describes the syntax and the pro-
cess by which the Generative Grammar of El Tajı́n Style
(GGTS) composes depictions of images. Subsequently,
the paper presents a brief description of the Prolog imple-
mentation of GGTS and brings forward some reasons for
considering GGTS an anthropological cognitive model of
creativity. The paper finishes discussing the virtues and
shortcomings of the Generative Grammar of the El Tajı́n
Style (GGTS).

Keywords: Computational creativity, shape grammar,
cognitive anthropology.

1 Introduction
Most computational applications for archaeology focus on
statistical analysis, geographical information systems, au-
tomated cartography, virtual reality, 3D scanning, and in-
ternet applications (Wise and Miller, 1997; Prinke, 2005;
Dawson and Richard, 2005; Bellanger et al., 2006; Ebert,
2006). However, automatic tools for the description, clas-
sification, interpretation and generation of iconographic
material are necessary too. An overview of the methods
currently used in iconographic studies is done by Camiz
(2004). He describes some notational methods, and dis-
cusses their conveniences and limitations. All those meth-
ods are algebraic languages where symbols represent-
ing spatial relations articulate symbols standing for icons
(e.g., {iconName1 . iconName2}, where “.” may mean
“is besides”). Unfortunately, none of these languages can
be considered an objective definition, because none of
them generates novel instances of a given style.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

In contrast, shape grammars have been more success-
ful in this respect. The first examples were designed in
the early 70s, but it was in the 80s when grammars were
used to define specific artistic styles (Kirsch and Kirsch,
1988), and in the 90s when they were combined with
pattern recognisers (Scidmore and Bajcsy, 1979; Bajcsy
et al., 1984; Matsello et al., 2002) 1.

In this paper we present a Generative Grammar similar
to those created by Kirsch and Kirsch. The grammar, re-
ferred to as the Generative Grammar of the El Tajn Style
(GGTS), does not work with pixel maps. Instead, it gen-
erates and recognises surrogate representations.

Figure 1: Examples of the El Tajı́n Style

2 Former Archaeological Studies
El Tajı́n City is an archaeological site located at the East
Coast of México (300a.d-900a.d). The reliefs of the city
have been studied in multiple occasions, although the bulk
of these works concentrates in the symbolic or religious
content of the sculptures. Amidst the few works study-
ing the compositional structure of the images, the most
cited are those authored by Proskouriakoff (1953), Kam-
pen (1972), Castillo-Peña (1995), Pascual Soto (1990) and
Pascual Soto (2005).

Among the numerous and decisive contributions made
by all these researchers, we review the one of Pascual Soto
(1990), for only this author employs a formal language as
part of his proposal. His syntax, very similar to those dis-
cussed by Camiz (2004), describes a compositional struc-
ture in which a “base” (principal) symbol is surrounded
by outer symbols. This syntax has two shortcomings. It
does not allow any kind of inference and it does not offer

1For a brief history of shape grammars consult
http://www.shapegrammar.org/

Computational Creativity 2007

39

any objective method for the translation of a formula into
the image it depicts. The formulas indicate that an icon
(complex or simple) is over, below, at the left, or at the
right of a central icon. They do not give any hint about the
exact position and appearance of the symbols2.

To sort out this problematic, it was sought a formal
representation that could model the cognitive skill be-
hind the design and contemplation of the sculptures. This
representation was constructed with an inductive method.
First, a sample of the known sculptures was analysed in
a hierarchical manner in order to detect the compositional
regularities characterising the El Tajı́n Style. Later, these
regularities were extrapolated and represented with for-
mulas expressing the common layout of similar scenes
and objects. At the end, since these formulas depicted
similitudes of different levels of abstraction, it was nec-
essary to define rules describing which compositional ar-
rangements could be jointed with what others. These
rules, once organised, gave rise to a generative grammar.

3 Compositional Principles of
EL Tajı́n Style

Every relieve in El Tajı́n City is engraved over a stele or
a pile of stones. The engraved images show single ob-
jects or scenes (characters inside a context). Scenes are
always framed, while single objects may appear without
a frame. Single objects are pumpkins, serpent heads (Fig.
1.1), and solitary anthropomorphic figures (Figs. 1.3, 1.4).
Scenes, on the other hand, represent human sacrifices, of-
fering rituals, processions of warriors with prisoners, sat
rulers guarded by floating serpents, and anthropomorphic
figures kept in architectural structures (Fig. 1,2).

Each of those themes is repeatedly observed, although
in each occasion slight variations are introduced in the el-
ements conforming the image. This exploratory creativity
constrained by rigid conventions, common in most forms
of religious art, is the one modeled by GGTS.

4 Formal Structure of GGTS

GGTS comprises an Inferential mechanism (I) for the
generation of relieves, a list (P) of 1267 Productions
hierarchically arranged, a start symbol (Sculp), a
list (N) of 1125 Non-terminal symbols, a dictio-
nary (T) of 2140 Terminal symbols, a set (KV) for
the storage of Known Valuable images, and a set
(KR) for the storage of Known Rejected images
(GGTS = (I, P, Sculp, T,N, KV, KR)).

2Pascual Soto (1990: p208) describes the relieve in Figure 2
with the formula: ’(97.)(.?)(?:) /(1004 +, 414)/ (.)(.97)’.
This formula says that the base symbol (/ + /) is the association
(,) of the symbols 1004 and 414; that over (:) the base symbol
there’s an unclassifed symbol (?); that symbol 97 is to the right
(.97) of an unknown symbol located at the right (.) of the base
symbol; that symbol 97 is to the left (97.) of an unclassified
symbol located at the left of the base symbol.

Figure 2: Levels of composition within a relieve

I is a non-monotonic system based on Closed
World Assumption (CWA (S) = ((S 6` P,) → (S |∼
¬P))) and Modus Ponens ((P, P → Q) ` Q).

The productions in P have the form:

IconName →
Preposition < IconName//IconName >.

Here, Preposition, as in many natural language grammars,
refers to a symbol that specifies the spatial relation that
articulates two objects, in this case icon names. There are
non-terminal and terminal prepositional symbols.

Computational Creativity 2007

40

Table 1: Prepositional symbols. Every prepositional
relation has a terminal symbol (cls 1) and a

non-terminal symbol (cls)

The angle brackets represent the punctuation marks that
limit the scope of a prepositional symbol, and the double
slash represents the marks that separates the names of the
two elements participating in a topological relation. Both
kinds of marks have a non-terminal and terminal version.
Non-terminal parentheses are“[” and “]”, and the terminal
ones are “(” and “)”; whereas non-terminal separatrix is
“/”, and terminal separatrix is “,”.

Figure 3: Examples of feature categories

IconName symbols may refer to terminal icon names
(names of a basic features), or to non-terminal icon names,
where a non-terminal icon name is that which can be
transformed into a terminal icon name or into a chain

of non-terminal symbols of the form Preposition <
iconName//iconName >.

The terminal and non-terminal icon names are abbre-
viated phrases describing the asymmetric geometry of an
icon category or icon feature. This is, the terminal and
non-terminal icon names of the grammar describe the ori-
entation of an object, as is perceived from a vantage point
(Fig. 3).

The two types of icon names are distinguished by a
typographical mark. Feature names end with the suffix
“ n”, where n could be any natural number.

As an example, take the case of the symbol
rghtArmRghtSideview; it means right arm seen
from its right side view. But given that it has no
suffix, then it is a non-terminal icon name. Hence,
it is not possible to associate a specific drawing to
rghtArmRghtSideview. In order to be instantiated, it
must be transformed into a topological relation sustained
by two or more icon names.

The abstractness of a non-terminal icon name is rep-
resented with groups of productions with equal symbols
on the left side of the arrow, but different chains of sym-
bols on the right side of the arrow. Consider the following
examples:

(1)

rghtArmRghtSideview →
cls[rghtForearmRghtSideviewDescend/
cls[braceletDescend/
opnRghtHndRghtSideviewDescend]].

(2)

rghtArmRghtSideview →
cls [rghtForearmRghtSideviewHorizontal/
cls[braceletHor/
opnRghtHndRghtSideviewHoriz]].

These productions express that the category
rghtArmRghtSideview includes two subcate-
gories. Thus, every time a right arm seen from its right
side view has to be constructed, it might end up with the
appearance of a:

(1) Right forearm seen from its right side view
in descending position, contacting the left side
(CLS) of a bracelet in descending position,
which contacts the left side of an open right
hand seen from its right side view in descending
position.

Or it might look like a:

(2) Right forearm seen from its right side view in
descending position, contacting the left side of
a bracelet in horizontal position, that contacts
the left side of an open right hand seen from its
right side view in horizontal position.

Given this set up, it is possible to describe GGTS as
a hierarchical collection of compositional conventions. In
this hierarchy, the most abstract formulas associate a ma-
terial support and a surface with a general scene distribu-
tion. Less abstract formulas define which icon types are

Computational Creativity 2007

41

to be located in which positions. And the most concrete
formulas describe the way in which observable features
(terminal icon names) conform a coherent and valuable
image (Figs.2 and 3).

5 Derivation of Relieves with GGTS
The constitution of an image is a compositional process.
And it is precisely this fact what allows both to recognise
known instances of the El Tajı́n Style as well as to create
new ones.
5.1 Production of Novel Images

The production of a novelty always begins with the in-
troduction of the start symbol (Fig.4.1), and ends up
with the construction of a formula describing the posi-
tion of every basic feature conforming the image (Fig.
4.19). In Figure 4 (Fig.4.2- 4.4), after its introduc-
tion the start symbol (Sculp) is substituted by a for-
mula that articulates a support (stele) with a rectan-
gular surface and an unframed layout (board1). After-
wards, a drawing plan is decided by picking out a gen-
eral theme: unusualAnthropomorphicFigure.
This last decision causes the image to be segmented
into three sections (Fig 4.5), one over the other:
unusualHead, unusualTorso, and belt. Subse-
quently, unusualHead is expanded into, or rewritten
as, the main sections of a head: an unusualBeard be-
low an unusualFaceCountour that encloses an
unusualFace1. Then unusualFaceContour is
transformed into unusualFaceCountour 1(Fig 4.6).
Afterwards, unusualFace1 is subdivided into four
sections: leftUnusualEye, rightUnusualEye,
unusualNose, and unusualMouth: the first next to
the second, the third below the former two and above
the fourth one. Subsequently (Figs. 4.7- 4.11), the
four subsections are filled out with the terminal icon
names leftUnusualEye 1, rightUnusuaEye 1,
unusualNose 1, and unusualMouth 1. Once this
is done, the symbol unusualBeard is transformed into
unusualBeard 1 (4.12). At this moment the head has
been finished.

The torso is constructed likewise. The symbol
unusualTorso is transformed into a topological rela-
tion sustained by three non-terminal icon names: a left
arm, a necklace and a right arm. Afterwards, a torso is in-
stantiated by transforming each of those non-terminal icon
names into suitable terminal icon names (Fig. 4.13- 4.16).
Finally, the non-terminal icon name belt is substituted
by a decoration inside the contour of a belt (Fig. 4.17).

Given that the image has been constructed by strict
fulfilment of accepted rules, the value of the image is
granted. It is a well formed object. Nevertheless, its nov-
elty still has to be evaluated. This is done by searching for
a copy of the constructed image in KV, which is nothing
more than a list of previously constructed descriptions. If
there is no such copy, then the image will be taken as a
novelty and will be included in KV (this process is ex-
plained in section 5.2).

This criterion may be considered a naive instance of
what may be called creative. However, the approach here
presented is tied to create new things out of a language,

and also tied to comply with a set of internal rules. In any
case, an image thus created is totally new with respect to
what ever was known before, and this is why we call it
a novelty. Withal, the archaeological evidence found at
El Tajı́n seems to show that, at least in certain societies,
a novel and valuable artistic piece can be obtained by an
exploratory strategy interested in very slight variations.

Figure 4: Construction of a new image

5.2 Recognition of Novelties

The recognition process is a compositional sequence too.
As shown in the example of Figure 5, the process starts
with the reception of an input formula describing an im-
age. This initial input is taken as a “what is this?”
question. This sets out the production of a hypoth-
esis about its general layout (Figs. 6.1, 7.2). But,
given that the hypothesis is a non-terminal icon name
(s[quadrangularSupport...]), it cannot be con-
trasted with the input formula, which is entirely composed
of terminal symbols. Thus, the non-terminal icon name is
recursively transformed until the structure of a frame is
selected(Figs. 6.2-6.4, 7.2-7.5).

Later on (Figs. 6.5, 7.6), , SuperiorMargin2 is
transformed into a TopDelimitationMargin2
that encloses an Emblem1. Then
TopDelimitationMargin2 is transformed into
topDelimitationMargin2 1, which is, as its
typography attests, a terminal icon name that can be
matched with the input formula .

Computational Creativity 2007

42

s 1(quadrangularSupport 1,

p 1(quadrangularSurface 1,

s 1(

enc 1(topDelimitatioMargin2 1,

c 1(

cls 1(rearDecoAbstIconHorRghtSideviewUp 8,

cls 1(ct 1(

skelEyebrowRghtSideview 7, jawAbstIconFront 1),

ct 1(leafLftSideviewHorUp 1,

supDentitionRghtSideviewHorUp 6))),

cls 1(cls 1(

cls 1(supvoluteBagRght 4, InfVoluteBagRght 1),

...)...)..)..))))

Figure 5: Reclined Victim Sacrifice and Input formula
depicting the highlighted fragment

After a successful first matching (Fig.7.6), the com-
positional process continues until the icon described in
Figure 5 is accepted as a valuable El Tajı́n style image.
Finally, the novelty of the image is confirmed by checking
that there is no record of it in KV (7.16).

Figure 6: Initial steps of a derivation sequence

An alternative scenario would be that in which no suc-
cessful hypotheses could be derived from the productions
of the grammar. In this case, the absence of an applicable
production would enable the storage of the formula into
the set KR, although this conjecture could be retracted af-
ter the acquisition of new knowledge. In this last case, it
would suffice to search in KR for formulas that could be
recognised as valuable, despite its previous rejection.

Figure 7: Recognition process

6 Prolog implementation
The Prolog version of the grammar (GGTS.pl) runs as a
depth-first search that traverse a searching space from left
to right. This basic mechanism always starts a search in
the same point (Sculp) and may follow an exhaustive
route. However, if the user introduces a query specifying
a type of theme or the exact position of a feature or chain
of features, the search is done differently. In these two
cases, GGTS.pl starts in the same initial node and derives
part of an image, but if the created segment does not suit
the conditions stated by the user, the image is cancelled
and a whole category of similar images is discarded, thus
preventing the exploration of certain regions of the search-
ing space.

A second manner in which the searching process is
hastened is through a modular structure. GGTS’ produc-
tions are sorted in accordance to their level of abstraction
and general subject. This set up lessens the number of
lines to be read when searching for a rule.

Computational Creativity 2007

43

The productions of GGTS.pl have one of two forms:

(a)

nonTerminalIconName(A,F):-
Preposition (A,B),
OpeningParenthesis (B,C),
NonTerminalIconName(C,D),
NonTerminalIconName(D,E),
ClosingParenthesis(E,F),
ParsingProcess.

(b)

nonTerminalSymbol([terminalSymbol | Tail],Tail).

In (a), the lines ending with two variables inside a paren-
thesis are list constructors. They introduce terminal icon
names into specific positions of a list, enabling the trans-
formation of the Sculp symbol. The line “parsingPro-
cess” is the call for a procedure that registers the success-
ful use of the production. On the other hand, the form (b)
is used to define a terminal symbol. In this way, at the
end of a successful search, the list constructors compose
a chain of basic features, while the registration process
gives an interpretation of that chain.

Figure 8: Example of a query

Besides the productions of the grammar, there is a set
of seven predicates that allow the user to 1)print or save
the formulas generated during a session, 2)run test suites,
3)sort formulas into the sets KV and KR, 4)decide if a
given formula is valuable and new, 5)revise the set KR
(retract conjectures), and 6)obtain an interpretation for a
given formula. Figure 8 illustrates some of these predi-
cates. The query tells GGTS.pl to construct and describe
a sculpture, intepret it, save it in KV (if possible), and
store a copy in “a given file”. The result of each command
is separated by horizontal lines.

The accuracy of GGTS.pl has been partially con-
trasted against the official catalogue of the Mexican Na-
tional Institute of Anthropology (Castillo-Peña, 1995).
The productions now registered in the program are re-
liable. They accept what they are supposed to, and re-
ject paradigmatic examples of the styles created at other
related cities (Teotihuacan, Tula and Tecnochtitlan). On
the other hand, the grammar is still an incomplete model
and the rules are somewhat rigid. Nevertheless, given the

non-monotonic structure of the program, when the miss-
ing compositional conventions of El Tajı́n style get to be
included, it will be possible to update the sets T, N and P,
revise the set KR, and expand the set KV (section 4).

7 GGTS as an Anthropological and
Cognitive Model of Creativity

Cognitive archaeology studies the human ability to con-
struct and use symbols (Renfrew et al., 1994; Preucel,
2006). Its principal interests are design, representation
(production and utilisation of iconic embodiments of real-
ity), planning, measurement, religion and symbolic social
control (preservation of social alliances). In accordance
with these objectives, it has been shown that GGTS.pl has
access to a set of possible symbols quite similar to the
one accessed by the inhabitants of El Tajı́n city. But for
the sake of anthropological adequacy, it is also of inter-
est to see if the functional sequence of the compositional
process done by the grammar has any similitude with the
functional sequence of the human brain.

Psychological experiments interested in eye move-
ments have shown that visual scenes are scanned in
a piecemeal manner, following the guidance of mental
schemata that predict the general layout of a scene (Hen-
derson and Ferrerira, 2004; Cowan and Moorey, 2006).
Likewise, it seems to be the case that the same mental
schemata are used to guide bodily movements, such as the
motion of a sculptor’s arm (Mushiake et al., 1999; Car-
mena and Nicoleli, 2003). In this respect, the step-by-step
scanning of a formula, coupled with the sequential con-
struction of a descriptive formula, are thought of as a sim-
ulation of the process by which those abstract maps direct
attention.

Also, neurophysiological evidence seems to show that
the abstract maps just mentioned are stored in modules
located at the motor areas of the parietal cortex, sepa-
rated from the modules that recognise particular shapes,
which are located at ventral areas of the brain (Colby
and Merriam, 2005). It seems, as well, that the visual
knowledge of the ventral area is organised in accordance
with the asymmetric geometry (viewpoint) of the known
shapes (Tanaka, 2003, 1997). Hence, the modular set up
of GGTS.pl, and the classification of the symbols in ac-
cordance with their asymmetric geometry are understood
as a partial representation of the functional anatomy of the
brain areas dedicated to high-level vision (Wandell et al.,
2005).

Fourth, linguistic studies have shown that the use of
prepositional expressions suggests that human mind ab-
stracts spatial relations with the aid of a topological ge-
ometry in which the location of an object is relative to
the location of other objects in the scene (Talmy, 2001;
Herskovits, 1997). Thus, describing an image as an as-
semblage of basic features, and the use of prepositions to
describe the abstract connections sustainable by any pair
of parts conforming a whole, are considered to be a plausi-
ble representation of the mental language that allows hu-
man cognition to perceive coherent wholes made up of
discernible parts.

If those correspondences are accepted, then it could

Computational Creativity 2007

44

be thought that GGTS.pl gives a plausible functional ac-
count of the basic mechanisms used by the human mind
during the processing of visual representations, including
the design of novel valuable images. Having said that,
GGTS.pl allows to argue that creativity is not an exclu-
sive feature of productive activities, but an essential ele-
ment of perception. Many of the cognitive abilities used
during the production of novel objects are used as well
during the recognition of valuable and novel objects. In
the case of El Tajı́n relieves, both, sculptors and specta-
tors, most probably employed a set of compositional con-
ventions internalised as abstract maps. Sculptors probably
used these maps to select the position of each shape, and
to plan the movements of their limbs. Observers, on the
other hand, probably utilised the same maps to plan the
movements of their eyes and to check if every feature was
located in the correct position. Likewise, sculptors and
spectators probably had to explore a space of possibilities
before deciding whether a particular combination of fea-
tures correctly instantiated an accepted convention. Both,
also, probably had to compare a well formed object with
previous creations in order to know if a totally new object
was witnessed.

8 Discussion
As a cognitive functional model, GGTS simulates four as-
pects of visual knowledge: 1)the application of a topolog-
ical geometry, 2)the use of a mereological ontology or-
ganised in accordance with the asymmetric geometry of
the forms conforming visual experience, 3)the flow of the
process known as active vision, and 4)the design of sym-
bols. The first two aspects are embodied by the symbols
of the system and the modular organisation of the pro-
ductions. The other two are simulated by the derivation
process of the grammar: the most abstract schemata pre-
dict the layout of a complex scene and activate a chain
of modules that predict the shape of the features compos-
ing complex wholes. When the aim is the production of a
formula, the corroboration of every foreseen consequence
guarantees the quality of the object; and when the task is
to give sense to a formula, the confirmation of anticipated
outcomes explains away many possibilities assuring the
plausibility of the final categorization.

As a creative mechanism, GGTS is a well-known tool.
Boden (1998) and Wiggins (2005) classified generative
grammars as exploratory mechanisms and subordinated
them to transformational systems, which not only explore
structured conceptual spaces, but distort their boundaries
in order to discover new compositional possibilities. Ac-
cordingly, GGTS only explores a fixed conceptual space.

Notwithstanding this limitation, a shape grammar can
still bring about some surprises. Generative grammars im-
plemented in Prolog generate variations with backtracking
as its only aid. However, in the case of GGTS.pl, a slight
improvement was obtained by introducing two sets: one
for the storage of valuable products (KV), the other for
the storage of rejected products (KR). With this set up, the
grammar not only generated valuable objects, but was able
to detect the novel ones, even when the formulas where
not created by it, or were generated during independent

sessions. Other programs have used analog solutions. The
problem with GGTS is that it makes this evaluation only
on finished objects, where as other programs do it on ear-
lier stages of the production process (Pérez y Pérez and
Sharples, 2004; Pérez y Pérez, 2007).

Like most generative grammars, GGTS cannot extrap-
olate general rules from particular instances. The only
way to expand its knowledge base is by manual introduc-
tion of information. However, it is worth to consider that
the plain addition of features (terminal icon names) in the
appropriate categories creates a whole new set of novel
and valuable complex images.

Despite its negligibility, the afore mentioned improve-
ments are useful, once applied in the proper situation. In
many occasions, archaeologists and art historians advance
competing definitions without giving a mechanical proce-
dure for the testing of their theories. In cases like these,
the exploratory creativity of shape grammars might be the
objective tool that could evaluate the predictive power of
competing style definitions. As any other archaeologi-
cal theory, every time new sculptures were associated to
indubitable archaeological contexts, each style definition
would have the opportunity to be tested, being better the
one accepting the biggest number of legitimate cases and
rejecting the biggest number of unacceptable objects. Ac-
cordingly, a shape grammar could also be considered a
tool for scientific discovery. Every time a legitimate ar-
chaeological finding could not be recognized by the best
grammar, this finding would have to be considered a real
scientific discovery, since the best theory did not predict
it and scientists were forced to revise and, perhaps, reject
earlier inferences (Aliseda Llera, 2006). Finally, a shape
grammar with the sets KV and KR, is a catalogue capable
of accepting only new instances of a certain style. This
catalogue, given the parsing mechanism of the grammar,
would also be capable of interpreting and sorting out the
images stored in it, assisting archaeologists not expert in
iconography in the elaboration of accurate field reports.

A final archaeological potential is related to the ex-
panding conditions of a grammar. If the set of terminal
symbols (T) was transgressed, so that some features were
incorrectly sorted, then the new grammar would create a
set of new but illegitimate variations, that, nonetheless,
would look very similar to well formed images. In this
case, teachers training archaeologists would have a me-
chanical way to produce expert appraisal drills.

At this point, two shortcomings of GGTS.pl should be
reminded. First, it does not process pixel patterns. The
user would have a better experience if she/he could avoid
the writing of the formulas. Second, the productions of
the system could be more flexible, enabling the designer
to introduce a smaller number of them. These flaws are
expected to be surpassed in subsequent versions of GGTS.

To summarise, GGTS and GGTS.pl have the limita-
tions known for every generative grammar, but this con-
dition did not forbid the generation of things that were
not there from the beginning. Also, it should be reminded
that slight changes enhanced the performance of a classi-
cal formal system. Therefore, GGTS and GGTS.pl show
that generative grammars, if put in a convenient context,
are still useful instruments for scientist and students.

Computational Creativity 2007

45

Acknowledgements
The authors give thanks to the Instituto Nacional de
Antropologı́a e Historia (INAH) for its permission (401-
3-4042) to reproduce the tagged relieves presented along
the paper. We acknowledge that this permit only allows
nonprofit uses and does not donate any kind of copyright
over the images, for the objects reproduced are property
of the Mexican Nation.

Part of Álvarez Cos’ contribution was funded by a
CONACyT scholarship (August 2004 to June 2006).

References
Aliseda Llera, A. (2006). Abductive Reasoning: Logical

Investigations into Discovery and Explanation, volume
330 of Synthese Library. Springer, Dordrecht/ New
York.

Bajcsy, R., Wu, C. K., and Wang, D. Q. (1984). Visual
and conceptual hierarchy: A paradigm for studies of
automated generation of recognition strategies. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 5:319–325.

Bellanger, L., Husi, P., and Tomassone, R. (2006). Sta-
tistical aspects of pottery quantification for the dat-
ing of some archaeological contexts. Archaeometry,
48(1):169183.

Boden, M. (1998). Creativity and artificial intelligence.
Artificial Intelligence, 3:347–356.

Camiz, S. (2004). On the coding of archaeological finds.
Archaeologia e Calcolatori, 15:201–218.

Carmena, J. and Nicoleli, M. (2003). Learning to control
a brain-machine interface for reaching and grasping by
primates. Public Library of Science. Biology, 1(2):193–
208.

Castillo-Peña, P. (1995). La Expresión Simbólica de El
Tajı́n. INAH, México.

Colby, C. and Merriam, E. P. (2005). Active vision in pari-
etal and extrastriate cortex. Neuroscientist, 11(5):484–
493.

Cowan, N. and Moorey, C. C. (2006). Visual working
memory depends on attentional filtering. Trends in
Cognitive Science, 10(4):139–141.

Dawson, P. C. and Richard, L. (2005). Using computer
modelling and virtual reality to explore the ideologi-
cal dimensions of thule whalebone architecture in arctic
canada. Internet Archaeology, 18:2–3.

Ebert, D. (2006). Predictive modelling and time: An ex-
periment in temporal archaeological predictive models.
Internet Archaeology, 20:2–3.

Henderson, J. M. and Ferrerira, F. (2004). The Interface of
Language, Vision and Action. Eye Movements and the
Visual World. Psychology Press, New York.

Herskovits, A. (1997). Language, Spatial Cognition and
Vision. Stock, Oliviero (ed.) Spatial and Temporal Rea-
soning, Kluwer. Dordrecht.

Kampen, M. (1972). Sculptures of El Tajn, Veracruz. Uni-
versity of Florida Press, USA.

Kirsch, J. L. and Kirsch, R. A. (1988). The anatomy
of painting style: Description with computer rules.
Leonardo, 21(4):437–444.

Matsello, V., Kijko, V., Masuch, H., and Stanke, G.
(2002). Recognition of mason marks images. Proc.
of Inter. Conf. Electronic Images and Visual Arts EVA,
pages 69–76.

Mushiake, H., Fuji, N., and Taji, J. (1999). Microstimula-
tion of the lateral wall of the intraparietal sulcus com-
pared with the frontal eye field during oculomotor tasks.
Journal of Neurophysiology, 81:1443–1448.

Pascual Soto, A. (1990). Iconografı́a Arqueológica de El
Tajı́n. Fondo de Cultura Econmica, México.

Pascual Soto, A. (2005). El Tajn. En busca de los orı́genes
de una civilización. IIE-UNAM-INAH, México.

Pérez y Pérez, R. (2007). Employing emotions to drive
plot generatioin in a computer-based storyteller. Cog-
nitive Systems Research, 8(2):89–109.

Pérez y Pérez, R. and Sharples, M. (2004). Three
computer-based models of story telling: Brutus, min-
strel and mexica. Knowledge-Based Systems, 17(1):15–
29.

Preucel, R. W. (2006). Archaeological Semiotics. Black-
well, New York.

Prinke, A. (2005). Digitising historic excavation archives.
Internet Archaeology, 18.

Proskouriakoff, T. (1953). The Classic Art of Central Ve-
racruz. University of Texas Press, Austin.

Renfrew, C., Ezra, B., and Zubrow, W. (1994). The An-
cient Mind. Elements of Cognitive Archaeology. Cam-
bridge University Press, Cambridge.

Scidmore, S. and Bajcsy, R. (1979). Computer analysis
and description of pottery sherd patterns. International
Journal on Policy Analysis and Information Systems,
3(1).

Talmy, L. (2001). Toward a Cognitive Semantics, vol-
ume 1. MIT-Press, Cambridge.

Tanaka, K. (1997). Mechanisms of visual object recogni-
tion: Monkey and human studies. Current Opininion in
Neurobiology, 7(4):523–529.

Tanaka, K. (2003). Columns for complex clustering of
cells with similar but slightly different stimulus selec-
tiveness. Cerebral Cortex, 13(1):90–99.

Wandell, B., Brewer, A. A., and Dogherty, R. F. (2005).
Visual field map clusters in human cortex. Philo-
sophical Transactions of the Royal Society, section B,
360(1456):963–707.

Wiggins, G. A. (2005). Searching for computational cre-
ativity. IJCAI’05 Workshop on Computational Creativ-
ity, pages 2–3.

Wise, A. and Miller, P. (1997). Why metadata matters in
archaeology. Internet Archaeology, 2.

Computational Creativity 2007

46

Tra-la-Lyrics: An approach to generate text based on rhythm

Hugo R. Gonçalo Oliveira
CISUC

Dep. of Informatics Engineering
University of Coimbra, Portugal

hroliv@dei.uc.pt

F. Amı́lcar Cardoso
CISUC

Dep. of Informatics Engineering
University of Coimbra, Portugal

amilcar@dei.uc.pt

Francisco C. Pereira
CISUC

Dep. of Informatics Engineering
University of Coimbra, Portugal

camara@dei.uc.pt

Abstract
This paper is about an ongoing project, Tra-la-Lyrics
which aims to create a computer program capable of gen-
erating lyrics for given melodies. As a preliminary phase,
the correlations between words and rhythm in a song’s
lyrics was studied and some heuristics were achieved. Al-
gorithms for syllabic division and syllabic stress identifi-
cation on a word were implemented. A method for cal-
culating the strength of each beat of a melody was also
used. The actual system’s architecture is described. To get
the contents of the lyrics we’ve used a relational database
where we could find not only the words, but also their
grammatical category and some morphological related at-
tributes. Some ongoing work is also referred and some
examples of the currently possible outputs of the system
are presented. Conclusions and possible further work are
finally discussed.

Keywords: computational creativity, rhythm, text gen-
eration, music, lyrics

1 Introduction
In the last few years we’ve been starting to accept the
computer as a an artificial artist, highly contributing for
turning the creative systems an interesting topic for re-
search. There are many known creative systems with
purposes like, for example, composing musical pieces
[Cope (1987)], telling stories [Bringsjord and Ferrucci
(1999); Gervás et al. (2006)], making up jokes [Binsted
et al. (1996)], creating visual art [Machado and Cardoso
(2000)], making up poetry [Manurung (2004); Gervás
(2000); Dı́az-Agudo et al. (2002); Gervás (2001)] and so
on. During these later years we have also seen a huge
growth of systems where users can customize some digital
and multimedia contents they can share with their whole
community or simply keep them for their own use. Com-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Goldsmiths, University of London

bining these two with the challenge it represents for re-
search and the fun we hope it will provide, our objective
is to design and develop a system capable of generating
lyrics in the Portuguese language, from given melodies.

Lyrics have strict metrics that gives us the notion of
rhythm. Metrics is obtained by the existence of syllables
with different strengths. Also very important is the choice
of words, which should not only obey the metrics, but
also employ some phonetic patterns like the use of rhyme
or alliterations. Although we may argue lyrics have al-
ways an emergent semantics, the semantic aspects are not
a present concern of our project. We may even state that
there shouldn’t be a predefined semantics at all letting the
users have their own free interpretation. Most of the times
it is possible to make some interpretation out of any word
sequence, specially if the words follow some gramatical
structure.

With this system, we hope to contribute to the general
endeavor of building artificial artists. It intends to accom-
plish one of the less explored tasks in automatic music
production: writing the lyrics, given the melody. As far as
we know, there were no previous attempts to develop such
a system.

The structure of this paper starts by referring some im-
portant authors and applications in the area of creative text
generation, as they can be included in the same category
of the system are creating. After presenting some pre-
liminary work, we will introduce the system itself, Tra-
la-Lyrics. There will be given special focus to its actual
architecture, the way it represents some important con-
tents and also some ongoing work. At the end two sample
generated lyrics will be shown.

2 State of the Art
2.1 Poetry generation systems

From the existing systems, poetry generating ones are
probably the closest to ours. In this subsection we will re-
fer some works in the area of poetry generation and their
similarities and contributions to our system.

In his thesis, Hisar Manurung Manurung (2004) pro-
poses an evolutionary approach for poetry generation and
provides a computational model of metrical similarity, the
minimum edit distance. In this thesis there is a whole
chapter dedicated to poetry and automatic poetry gener-
ation where he describes some interesting aspects like a

Computational Creativity 2007

47

definition for poetry, something about the process of cre-
ating poetry and a categorization for the existent poetry
generation systems. He defines poetry in a way that it can
be falsifiable and though a possible topic for research, ex-
periment and evaluation. A poetic text should follow the
properties of meaningfulness (M), grammaticality (G) and
poeticness (P). It must convey some conceptual message,
obey the given grammar rules and have some poetic fea-
tures such as rhythm and rhyme. According to the prop-
erties they are in agreement with, he divides the existing
poetry generation systems into four categories: word salad
(respects no property); template and grammar-based (re-
spects G property); form-aware (respects either P or G and
P property); and poetry generation (respects G, P and M
property). The minimum edit distance, used to evaluate
the metrics, basically picks a candidate verse and com-
pares its metrics with some target pattern. The distance is
calculated by the number of syllables we would have to
change so that the candidate verse fits the metrics.

Pablo Gervás has many works in the area. He was
one of the first authors to make serious attempts to po-
etry generation. He created the WASP system Gervás
(2000) whose main objective was to study the effect of
the initial data in the resulting poem and to test differ-
ent generating strategies. ASPERA Gervás (2001) and
COLIBRI Dı́az-Agudo et al. (2002) are examples of semi-
automatic poetry generation system that take advantage
of case-base reasoning techniques to generate Spanish po-
etry. In Gervás (2001) it is referred that there are three
major challenges concerning automatic poetry generation,
respectively the specification of the formal requirements
that define a correct poem, the appropriate management
of an extensive vocabulary and the correct combination of
words.

2.2 Related applications

We can find many online applications able to generate cre-
ative text in the web. The Poetry Creator [Lewis and Sin-
coff (2006)] is a system based on verse templates, where
the user is asked to give a subject, a synonym for the
subject and a title for the poem. The generated text in-
cludes both the subject and its synonym in the middle of
some poetic verses. There seems to be no present no-
tion of metrics or rhymes. As an example we have gener-
ated a poem whose subject was music and the given syn-
onym was songs. We got verses like ”Alms for the poor!”
cried the quickly, ecstatic music With lightning strokes, the
songs shot foreward;briefly, keenly. In The Essay Gener-
ator [Mullen (2006)] generates an essay about some topic
the user gives as an input. The generated essay includes
not only words but also figures and references. They have
always the same structure with an introduction respec-
tively followed by the Socials Factors, Economic Factors,
Political Factors and Conclusions sections. Nevertheless
the essays are most of the times completely nonsense, be-
cause they merely include the topic in previously made
sentences. As an example we have generated an essay on
the topic ‘music and lyrics‘ and got an essay with sen-
tences like “Difference among people, race, culture and
society is essential on the survival of our world, how-

ever music and lyrics smells of success.“ or “The question
which we must each ask ourselves is, will we allow music
and lyrics to win our vote?”. SCIGen [SCIgen (2005)]
is an automatic computer science research paper genera-
tor, including graphs, figures and citations. The user only
gets to include the name of the authors of the paper. The
contents of the paper are then generated using a context-
free grammar. SCIGen’s main objective is to test whether
some conferences have low submission standards. The
generated paper titled Rooter: A Methodology for the Typ-
ical Unification of Access Points and Redundancy1 was
once accepted.

Poesybeat [Initiative (2005)] is not a creative text out-
put system, but an interesting collaborative system main-
tained by an online community. Users can do one of two
things. Either they can send poems they would like to have
a melody so they could be sung, or they can send melodies
they wanted to have lyrics. The community users try then
to find suitable choices. The final result is recorded so
that everyone can listen to it. We are basically trying to
automatize the search of lyrics for a melody part.

3 Preliminary study
This section briefly presents some preliminary work. We
needed to study about the correlation about the words and
the melody notes in the song lyrics.

3.1 Syllables

Common sense tells us that, in a song, each syllable of
a word is associated to a note, so we had to find a way
of dividing Portuguese words into syllables. In order to
accomplish that, we’ve implemented our own algorithm.
Although it is based in the algorithm presented in [Velloso
(2006)], which was made for word wrapping in text pro-
cessors, we had to add many unhandled situations. Our
algorithm is based in some special groups of characters,
shown in Figure 1.

The original algorithm divides the words into syllables
using the groups VOWELS, CONJ1, CONJ2 and CONJ3.
Each group of vowels identifies a different syllable. A
complete syllable can also include consonants so, each
consonant will be included in the previous or next sylla-
ble, depending on which of the groups (CONJ1, CONJ2,
CONJ3) it belongs to. For example, for the word reinte-
grar we got the division rein-te-grar. We have added a
second part for the algorithm, that uses the division made
in the first part and then checks whether there is a syllabic
division in the middle of a group of vowels. This only
happens if the group is neither a dipthong nor part of a
(’g’, ’q’) + ’u’ + vowel construction. For example. given
the division rein-te-grar, we get the final division re-in-te-
grar. In this word, the dipthong “ei” doesn’t exist because
the letter ’i’ is followed by a nasal consonant.

3.2 Lyrics and rhythm

In order to generate lyrics for the given melodies we al-
ready knew there were some important rules, suggested

1http://pdos.csail.mit.edu/scigen/rooter.pdf

Computational Creativity 2007

48

VOWELS = (’a’, ’e’, ’i’, ’o’, ’u’, ’á’, ’à’, ’ã’, ’â’, ...);
SEMI VOWELS = (’i’, ’u’);
GA = (’á’, ’à’, ’é’, ’ı́’, ’ó’, ’ú’);
CIRC = (’â’, ’ê’, ’ı̂’, ’ô’, ’û’);
TIL = (’ã’, ’õ’);
H = (’h’);
U = (’u’);
CONJ1 = (’b’, ’c’, ’d’, ’f’, ’g’, ’p’, ’t’, ’v’);
CONJ2 = (’c’, ’l’, ’n’);
CONJ3 = (’l’, ’r’, ’z’);
CONJ4 = (’q’, ’g’);

Figure 1: Groups of characters used in syllabic division

in some online courses like the one from Berklee Lyric
Writing: Writing Lyrics to Music [Pattison (2002)] and
other online sources like [Simon (2006); Demeter (2001)].
Perhaps the most important rule is to make sure that the
stressed syllables are associated with the strong beats in a
way that the lyrics have the melody’s metric [Hayes and
Kaun (1996)]. In order to have some support for this rule
and to find out some other correlations between the sylla-
bles of the lyrics and the beats of the melody we’ve im-
plemented a simple information extraction program. The
program would give us some information particularly for
Portuguese. Its input was a set consisting of the melody
and the lyrics of 42 Portuguese popular songs with the
most usual types of meter2 and its output was a set of ta-
bles where we had information related to the amount of
stressed and unstressed syllables occurring in strong beats
and also in weak beats. The information we obtained was
in agreement with the rule of Bruce Hayes. Additionally,
we collected information about the resolutions of weak
syllables in strong beats, syllable prolongation and sylla-
ble contraction.

3.3 Stressed syllables and strong beats detection

To identify the stressed syllables in the words, we have
implemented an algorithm that used the syllabic division
and searched for characters and situations that could stress
some syllable. Some examples of these situations are the
presence of a graphical accent or the word terminating in
a vowel followed by an r, l or z. There is also a list of
18 unstressed monossylables: o, a, os, as, um, uns, me,
te, se, lhe, nos, lhes, que, com, de, por, sem, sob, e, mas,
nem, ou [Sı́laba (2006)]. All the words that didn’t match
any of the rules were considered as being stressed in their
penultimate syllable. This happens to be a rule for the
Portuguese language.

We have used the dots system, present in A Generative
Theory for Tonal Music [Lerdhal and Jackendoff (1983)]
in order to get the strength of the beats present in the most
usual types of meter. Considering level 0 the strongest, we
obtained the results shown in Figure 2 in what concerns
to the syllables present in the 42 songs. We divided each
note/syllable pair into three categories: notes with stressed
syllables, notes with unstressed syllables and linked notes.
Linked notes are usually associated with a prolongation of
the syllable in the previous note and are as strong as the
beat in the note they are linked to, so we could consider
them as neither stressed nor unstressed syllables.

2We have considered the following meter types: 2/4, 3/4, 4/4,
3/8 and 6/8

Figure 2: Distribution of syllables per level of strength

3.4 Rhymes and Repetition

As suggested in How to Write Lyrics [Demeter (2001)],
there are three important points one should pay attention
when choosing words for a song: rhythm, rhyme and
repetition. We have already referred how we handle the
rhythm. In order to provide some rhymes in the right
places, we have added the possibility of giving the pro-
gram a list with the notes where we want them to occur.
Each melody can have its own list. Rhymes are get by
placing words with the same termination in the given lo-
cations. In a later version we intend to automatize or as-
sist the identification of these locations by using a melody
segmentation analysis similar to the one in [Grilo (2002)].
Repetition has a very tight relationship with rhythm and it
is often present in visual art and music. When it comes to
repetition, we have simply added a component that lets
us control the probability of reusing previously chosen
words, if they fit.

4 Tra-la-lyrics: System description
4.1 System architecture

Our system is implemented in the Java programming lan-
guage and uses MySQL as a database engine. In Figure 3 it
is possible to see the generic architecture of Tra-la-Lyrics’
current version.

4.1.1 Inputs and Output

The basic input of our system is a MIDI file, which is
converted into the ABC notation [Gonzato (2003)] using
an external tool like midi2abc. After a couple of stages,
suitable text for the given rhythm will be generated. At the
end, we’ll have a new ABC file, consisting of the original
one with the generated lyrics inserted. Using tools like
abc2ps and ps2pdf we can easily get PDF sheet music
from the ABC file.

4.1.2 The modules

We briefly explain each one of the modules of our system:

Computational Creativity 2007

49

Figure 3: Generic system architecture

Figure 4: The Melody Object for the above sample notes

• Melody extractor: this module gets information
from the ABC file, using the ABC4J API Gueganton
(2005) and builds a Melody Object (Figure 4), which
is basically a list of Meters. The Meters themselves
are lists of Notes.

• Melody analyzer: for each Note of the melody, a
new object NoteInsideMeter is created. It contains
not only the Note object, but also its position inside
the meter, its strength and whether it is a note corre-
sponding to the end of a part and thus suitable to be
the start of a rhyme3. We get the strength of the notes
using the dots system present in A Generative The-
ory for Tonal Music [Lerdhal and Jackendoff (1983)].
The output of the Melody analyzer is an object con-
sisting of a list of NoteInsideMeter objects and some
methods to get the distance (number of notes) be-
tween a given note and the next where a special pat-
tern occurs. We call this object Notes and its rep-

3In the current version this info is provided by the user.

Figure 5: The NoteInsideMeter Object

resentation for the melody in Figure 4 is shown in
Figure 5. The special patterns will be listed shortly.
Each one of them is an event sequence relevant for
fitting the metrics of the text in the metrics of the
melody.

• Word selection: This module is responsible to get
words that fit in the melody rhythm. The Notes ob-
ject is iterated and after calculating the distance from
the current note to the next special pattern a word
should be obtained from the Vocabulary module. If
we get a new word, the next note’s index will be
needed. It is got by adding the number of syllables of
the new word plus the number of rests and the num-
ber of linked notes found to the current index.
In the following we are listing all the considered spe-
cial patterns. For each one of them, different kinds
of words will be needed, depending on the calculated
distance n. The words are supplied by the Vocabu-
lary module.

– Strong beat: A note occurs in a strong beat.
We have marked as strong, the beats whose cal-
culated strength is the highest of the meter or
higher than some predefined value.

The word should have at most n+2 syllables4

4Portuguese words are stressed in one of their last 3 syllables

Computational Creativity 2007

50

and its stress should be found in the nth sylla-
ble counting from the beginning of the word.
For the example in the picture, we would need
a word with 4 syllables with its second syllable
stressed, like an-gús-ti-a.

– Strong beat followed by a rest: A note occurs
in a strong beat and we can find a rest after it.

The word should have n syllables, and its stress
should be found in the nth syllable, counting
from the beginning of the word. For the exam-
ple in the picture we would need a word with
2 syllables with its last syllable stressed, like a-
mor.

– Strong beat followed by the end of the
melody: The note occurs in a strong beat and
it’s the last note of the melody.

Similar to the previous pattern. For the example
in the picture, we would need a word with 3 syl-
lables, with its stress appearing in the last one,
like i-lu-dir.

– Rest: A rest.

The word should have at most n-1 syllables, and
should not have stress at all. We have only con-
sidered 18 unstressed words, all of them mono-
syllables, making it difficult to have long se-
quences of unstressed words. However it does
not appear to be critical to have a few stressed
words not in strong beats.

– Strong beat followed by some note, followed
by a rest: The note is a strong beat, followed by
some other note, after which we can find a rest

The word should have at most n+1 syllables and
its stress should be found in its nth syllable. For
the example in the picture, we would need a
word with at most 3 syllables, with its 2nd syl-
lable stressed, like con-quis-ta.

– Last strong beat of the current part: The note
is in the last strong beat of the current part of the
music.
The word should have at most n+d syllables,
where d is the distance between the last strong
beat of the part and the last note of the part. The
nth syllable must be the stressed one.

– End of the melody: The note is the last of the
melody.

The word should be one of the 18 unstressed
monosyllables, because this pattern means we
have the last note of the melody and it’s not in a
stressed beat.

After having the lyrics for the whole sequence of
notes, a Lyrics Object is built, consisting of a se-
quence of Words, which on their own are sequences
of Syllables.

• Vocabulary: this module returns words, with a max-
imum number of syllables and a fixed distance to
the stressed syllable. The words are obtained from
a database, consisting of tagged words for the Por-
tuguese language and some of their syllabic attributes
like the syllabic division or the stress position. The
method used to get the words can be reimplemented
so that we can easily test different strategies.

• Lyrics insertion: at this stage the information in the
original ABC file is merged with the generated lyrics,
giving rise to a new ABC file.

4.1.3 The Database

As a source of words, we have used at first a database con-
sisting of the words in the treebank Floresta Sintá(c)tica,
which has a great amount of grammatically tagged sen-
tences taken from the Portuguese newspaper Público.
This treebank can be found in Linguateca [Linguateca
(2000)]. Due to some mistagged words and an unfriendly
database structure (with some information we wouldn’t
need), we have created a new database with words taken
from Floresta Sint(c)tica, tagged with a tool called Jspell
[Jspell (1995); Dias de Almeida and Pinto (1995)]. Every-
time we want, we can use a simple program we have im-
plemented to complement this database with words taken
from other texts (poetry for instance). The new database
keeps information about the grammatical categories of the
words, their root, their gender, their number and also spe-
cific information about verbs or personal pronouns, like
tense or person.

A table containing some syllabic related attributes for
the words, like syllabic division, stressed syllable posi-
tion or word termination was included in both databases.
In order to get those attributes, the algorithms referred in
Sections 3.1 and 3.3 were used.

4.2 Ongoing work

4.2.1 Strategies to get the words

As said before, the Vocabulary module has a method used
to get words, based on both the position of their stressed
syllable and the maximum number of syllables. This mod-
ule keeps the strategy of getting words, making the Words
Selection module simpler and the management and test-
ing of different strategies easier. At the moment we have
implemented three strategies:

Computational Creativity 2007

51

• Strategy 1, random words + rhymes: where the
Vocabulary simply returns random words and tries
to have rhymes in the end of some given parts. The
rhymes are simply based on the words’ termination.

• Strategy 2, words following sentence templates +
rhymes: where the Vocabulary module has a set of
simple Portuguese sentence templates that are ba-
sically a sequence of grammar tags. The returned
words are forced to follow some randomly chosen
templates so that there is some syntactical coherence.
There is also a submodule responsible for keeping
the gender and the number of the last article or pro-
noun, forcing the following noun, adjective or verb
to have the same morphology. With some probabil-
ity two templates can be linked using a conjunction.

• Strategy 3, grammar + rhymes (currently in de-
velopment): where the Vocabulary module uses a
grammar whose derivations build Portuguese sen-
tence templates. Each symbol in these templates is
an instance of some grammatical category and has a
set of attributes5 depending on the grammatical cat-
egory it belongs to. This strategy differs from the
above one, specially in the following:

– Backtracking is used when there are no suitable
words to correctly finish a sentence;

– If a list with the musical parts division is pro-
vided, it tries to make each sentence correspond
to a musical part;

– More grammatical categories are used and their
attributes can easilly be defined;

– Only open class words6 are reused.
– Each production has a different probability of

being chosen so that most common sentences
are more frequently built that less common
ones;

– It is able to generate a larger amount of different
templates;

Both strategies 2 and 3 try to get words that rhyme in
the end of some parts but, beyond the stress position and
the number of syllables, theses strategies have to deal with
restrictions like the category of the word and its morpho-
logical attributes, making it sometimes impossible to find
words that rhyme. In order to minimize this problem, the
program does the following: 1) Each time it needs to get a
word for the end of a part to start a rhyme, it tries to choose
between the matching words with the most common ter-
minations. This maximizes the probability of finding a
words that rhymes for the following verse(s); 2) Every-
time we end a verse with a different termination, we store
that termination. If there no words that follow all the re-
strictions and rhyme with the previous verse, we try to find
words that rhyme with other terminations we had stored.

4.2.2 Finding suitable locations for rhymes

At the moment, it is possible to include in the ABC file
a list with with some numbers corresponding to the notes

5gender, number, person...
6nouns, adjectives and verbs.

Ditos pessimistas
ditos tabagistas
ditos pessimistas
ditos pessimistas
cumprem conquistados
fins culpabiliza
fins concederia
cumprem utiliza

Figure 6: Sample generated lyrics using strategy 1

where we’d like to have a rhyme. We are planning to in-
clude an evolutionary algorithm similar to the one used in
Grilo (2002) so that the suitable places to have rhymes are
automatically proposed.

5 Demo runs
In this section we will ilustrate our system’s behaviour
with the analysis of three generated lyrics. Each one of
them uses one of the previously referred strategies. The
probability of reusing previously chosen words was set to
20% in the first and second and to 60% in the third. This
probability is however only applied when the Vocabulary
module is queried for a word and there are suitable words
that have already been used in the same lyrics.

• The music shown in Figure 6 is a known Portuguese
popular song called Papagaio Louro. The lyrics
were generated by our program using Strategy 1.
The lyrics are perfectly matching the rhythm and
many words like ditos and pessimistas have been
reused creating a somehow funny effect. We can
find rhymes in the desired places (tabagistas and
pessimistas, culpabiliza and utiliza). However, the
words sequence doesn’t obey grammatical rules.

• The music shown in Figure 7 is a known Portuguese
popular song called O Barquinho. The lyrics were
generated by our program using Strategy 2. Once
again the lyrics match the rhythm, even though this
strategy has more restrictions to get the words mak-
ing the probability of not matching the rhythm a little
higher. This example has also a rhyme in the right
place (alterar and olhar). The most different aspect
they have relative to the lyrics generated with Strat-
egy 1 is that the words follow some simple sentence
templates. The lyrics we present follow templates
like:

Computational Creativity 2007

52

Eram um camponês de aterros
um amigo fiel alterar
uma táctil sem mar se vivia
uma loira perante olhar
que uma paragem
lógica quer
despachem as extra
após perfeição

Figure 7: Sample generated lyrics using strategy 2

– verb article adjective preposition noun:
eram um camponês de aterros

– article noun adjective:
um amigo fiel

The probability of getting a conjunction between two
templates was set to 80%, but the only present con-
junction is the word que. Although we could get
some meaning from the lyrics generated with both
strategies, there is no explicit semantics. Strategy 2
simply generates (almost) grammatically correct sen-
tences.

• The music in Figure 8 is a well known song by The
Beatles, Love Me Do. The shown lyrics were gener-
ated using Strategy 3. They match the rhythm and
follow a large amount of templates, like:

– verb preposition verb:
afectam por ver

– verb article noun:
afectam as rãs

– article possessive-pronoun adjective noun:
uns seus nulos sais

– article noun adjective:
a pedra melhor

– article noun verb:
o fama põe

This music is divided into many small parts and that’s
why the lyrics have only short sentences. We can find
some rhymes like sais and tais or não and pulmão.
We can also find the repetition of words like peça,
afectam and ganham. The probability of reusing pre-
viously chosen words was set to a higher value (60%)
because: 1) it is more difficult to find used words
that match not only syllabic restrictions, but also cat-
egory and morphology restrictions; 2) this strategy
only tries to reuse words of open classes, as it is said
Section 4.2.1. Like the lyrics generated with Strat-
egy 2, these have no explicit semantics, however it

Ganham pensar afectam por ver
afectam as rãs afectam a flor
peça fora um seu mudo
peça o ex uns seus nulos sais
afectam a tais a pedra melhor
mil clientes a fama põe
peça vós não tais fundos
ganham um pulmão ganham a cor

Figure 8: Sample generated lyrics using strategy 3

is easier to build up some meaning out of them, be-
cause they follow grammatical rules.
This strategy has still a wide range for improvement.

6 Conclusions and further work
Despite the results already achieved we hope to get better
ones after refining some details and add new functionali-
ties. We are planning to let the users change some settings,
like the strategy used to generate the lyrics, the probability
of reusing words or the places where they’d like to have
rhymes. It would also be interesting to give them the pos-
sibility of having a set of preferred words or even texts,
which would have more probability of being included in
their generated lyrics.

In the future, more strategies for fitting the words in
the rhythm or to get words can be tested. One different
approach to fit the words could be similar to the one used
by Hisar Manurung in Manurung (2004). We could ana-
lyze the melody and create its metric pattern that would
be our target. We could then have a population of possible
lyrics. To evaluate each lyrics in the population we could
use the minimum edit distance, which would give us the
amount of syllables not matching the target pattern.

Another strategy for obtaining the words will soon be
tested, using the portuguese version of a (still) unpub-
lished surface text realizer. Although the current version
of the system only generates portuguese lyrics, it won’t be
difficult to change it to other languages. The syllabic divi-
sion and syllabic stress detection algorithms would have to
be reimplemented and a different source of words would

Computational Creativity 2007

53

be needed for each language.
As we all know, creative systems are not easy to eval-

uate. We are thinking in three different ways of evaluating
our system. For testing if the words correctly fit in the
rhythm, we can pick up a set of sample generated lyrics,
use the information extraction system implemented dur-
ing the preliminary work, and analyze the obtained infor-
mation. We will be able to compare the syllabic distribu-
tion in our lyrics with the one in the “real” song lyrics.
To evaluate the quality of the general output the better
way would probably be to have a considerable amount
of people answering questionaires, where they would be
asked to compare existing lyrics with some generated,
both for the same song. Another possible way of evalu-
ating the lyrics’ quality could be the implementation of
some system that would analyze a set of generated lyrics
for the same melody, and using some heuristics, evaluate
the presence of poetic features and vocabulary diversity.

Another interesting thing we could do in a near future
would be using some sung voice synthesis software, like
Singing Computer [Zamazal (2001)], to sing our gener-
ated lyrics. Singing Computer uses Lilypond music nota-
tion files as input and there is one known ABC to Lilypond
converter (abc2ly), making our task easier.

References
Binsted, K., Pain, H., and Ritchie, G. (1996). Machine

humour: An implemented model of puns. PhD thesis,
University of Edinburgh.

Bringsjord, S. and Ferrucci, D. A. (1999). Artificial intel-
ligence and literary creativity: Inside the mind of bru-
tus, a storytelling machine. Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ.

Cope, D. (1987). An expert system for computer-assisted
music composition. Computer Music Journal 11,4
(Winter).

Demeter (2001). How to write lyrics.
http://everything2.com/index.pl?node=
How%20to%20write%20lyrics.

Dias de Almeida, J. J. a. and Pinto, U. (1995). Jspell -
um módulo para a análise léxica genérica de linguagem
natural. http://natura.di.uminho.pt/˜
jj/pln/jspell.ps.gz.

Dı́az-Agudo, B., Gervás, P., and Gonzlez-Calero, P. A.
(2002). Poetry generation in colibri. ACM - Digital
Library.

Gervás, P. (2000). Wasp: Evaluation of different strategies
for the automatic generation of spanish verse. Proceed-
ings of the AISB00 Symposium on Creative and Cul-
tural Aspects and Applications of AI and Cognitive Sci-
ence.

Gervás, P. (2001). An expert system for the composition
of formal spanish poetry. Journal of Knowledge-Based
Systems, 14:181–188.

Gervás, P., Lönneker-Rodman, B., Meister, J. C., and
Peinado, F. (2006). Narrative models: Narratology
meets artificial intelligence. In Basili, R. and Lenci,

A., editors, International Conference on Language Re-
sources and Evaluation. Satellite Workshop: Toward
Computational Models of Literary Analysis, Genova,
Italy.

Gonzato, G. (2003). The abc plus project.
http://abcplus.sourceforge.net.

Grilo, C. F. A. (2002). Aplicação de Algoritmos Evolu-
cionários à Extracção de Padrões Musicais. PhD the-
sis, University of Coimbra.

Gueganton, L. (2005). abc4j.
http://gueganton.chez-alice.fr/abc.

Hayes, B. and Kaun, A. (1996). The role of phonologi-
cal phrasing in sung and chanted verse. The Linguistic
Review.

Initiative, P. A. (2005). poesybeat.
http://poesybeat.org/.

Jspell (1995). Jspell.
http://natura.di.uminho.pt/natura/
natura?topic=jspell.

Lerdhal, F. and Jackendoff, R. (1983). A Generative The-
ory of Tonal Music. The Massachussets Institute of Tec-
nhology, 2nd edition - 1996 edition.

Lewis, J. and Sincoff, E. (2006). Poetry creator 2.
http://www-cs-students.stanford.edu/˜
esincoff/poetry/jpoetry.html.

Linguateca (2000). Linguateca.
http://www.linguateca.pt.

Machado, P. and Cardoso, A. (2000). Nevar
- the assessment of an evolutionary art
tool. http://citeseer.ist.psu.edu/
machado00nevar.html.

Manurung, H. (2004). An evolutionary algorithm ap-
proach to poetry generation. PhD thesis, University of
Edinburgh.

Mullen, D. (2006). Essay generator.
http://radioworldwide.gospelcom.net/
essaygenerator/.

Pattison, P. (2002). Lyric writing: Writing lyrics to music.
http://www.berkleeshares.com/download/
870472/berklee musical stress.pdf.

SCIgen (2005). Scigen - an automatic cs paper generator.
http://pdos.csail.mit.edu/scigen/.

Sı́laba (2006). A sı́laba.
http://www.geocities.com/shiurtalmid/
catan/portuguese/v6.html.

Simon, T. (2006). Criterios para relacionar letra e musica.
http://www.musicaeadoracao.com.br/
tecnicos/musicalizacao/letra musica.htm.

Velloso, A. T. (2006). Separando slabas com c#.
http://www.microsoft.com/brasil/msdn/
Tecnologias/visualc/
SeparandoSilabas.mspx?mfr=true.

Zamazal, M. (2001). Singing computer.
http://freebsoft.org/singing-computer.

Computational Creativity 2007

54

Session 3

Musical Creativity

Computational Creativity 2007

55

Computational Creativity 2007

56

A Hybrid System for Automatic Generation of Style-Specific Accompaniment

Ching-Hua Chuan∗ and Elaine Chew†
University of Southern California Viterbi School of Engineering

∗Department of Computer Science and
†Epstein Department of Industrial and Systems Engineering

Integrated Media Systems Center, Los Angeles, CA
{chinghuc,echew}@usc.edu

Abstract

Creating distinctive harmonizations in an identifiable style
may be one of the most difficult tasks for amateur song
writers, a novel and acceptable melody being relatively
easier to produce; and this difficulty may result in the
abandonment of otherwise worthwhile projects. To model
and assist in this creative process, we propose a hy-
brid system for generating style-specific accompaniment,
which is capable of creating new harmonizations for
melodies, with proper harmonic resolutions, in a style that
is learned from only a few examples. In the proposed
system, a chord tone determination module first learns,
then determines, which notes in a given melody are likely
chord tones. According to these chord tones, triads are
assigned first to the bars with unambiguous solutions, and
these triads serve as checkpoints. The system then con-
structs possible chord progressions using neo-Riemannian
transforms between checkpoints, and represents the al-
ternate paths in a tree structure. A Markov chain with
learned probabilities for these neo-Riemanian transforms
then generates the final chord progression. We select four
songs by the British rock band, Radiohead, to evaluate the
system. Three songs are used for training, and an accom-
paniment is generated for the held out melody. We present
the results of two case studies. We find that the system
generates chords closely related to the original, and the
resulting chord transitions reinforce the phrase structure
of the melody.

Keywords: Automatic Style-Specific Accompaniment,
Chord Tone Determination, Neo-Riemannian Transforms,
Markov Chains.

1 Motivation

In this paper, we describe an automatic style-specific ac-
companiment system that makes song writing accessible

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

to both experts and novices. This work is inspired by
the fact that many people without formal musical train-
ing can sing karaoke, some even quite well, but have diffi-
culty crafting sophisticated chord arrangements in specific
styles for the melodies which they sing with such ease.
Without proper accompaniment, those creative melodies
would have only a limited existence, and would probably
soon be discarded. Thus, our solution to this problem is
to create a system that would automatically generate ac-
companiment to a melodic composition in a specific style,
given exemplar pieces.

Such a system must satisfy the following require-
ments. First, the system should be able to identify the
features important to the style specified by the user, based
on only a few examples. For music novices, it may be
difficult for them to use musical terms to describe a style,
but it is intuitive for them to ask for harmonization simi-
lar to some particular songs. Second, the system must be
capable of creating new chords not present in the example
pieces, but these chords should still be consistent with the
specified style. Third, chord transitions and harmonic res-
olutions must follow the style of the examples. Last but
not least, the accompaniment needs to support the phrase
structure of the melody, for example, through the insertion
of proper cadences at phrase endings.

In this paper, we propose a hybrid system for generat-
ing style-specific accompaniment. The system combines
music theoretic knowledge and statistical learning, which
has the advantage of being able to simultaneously main-
tain stylistic elements, such as chord tones and chord tran-
sitions, learned from the examples, and create new chords
with the theoretically and structurally correct harmonic
resolutions. Statistical learning allows the system to con-
struct style-related rules for automatic accompaniment,
however, the approach becomes problematic when there
are only limited numbers of training examples. The speci-
fication of style is often best done with no more than a few
examples, as large numbers can dilute the defining fea-
tures. However, rules learned from only a few examples
cannot be widely generalized. In particular, the generat-
ing of new chords sequences with appropriate transitions
are especially difficult for a purely statistical learning sys-
tem. Furthermore, without music knowledge, such as the
use of cadences at phrase endings and of neo-Riemannian
transforms that ensure parsimonious voice leading, a se-
quential and statistical approach has difficulty generating

Computational Creativity 2007

57

appropriate chord progressions with proper structural em-
phases.

The system comprises of several modules employ-
ing different computational approaches. The system first
determines the chord tones in the melody. The chord
tone determination module applies machine learning tech-
niques to choose the chord tones from the input melody
based on the example pieces. The system uses seventeen
attributes to represent the melody, including phrase struc-
ture information. Then, chords are prescribed at check-
points in the melody where it has been determined that the
harmony in that bar is unambiguous. Using these check-
points as anchors, we use neo-Riemannian transforma-
tions to build chord progressions between between con-
secutive checkpoints, according to the chord transitions
learned, and making sure to provide correct and smooth
harmonic resolutions. Finally, we use Markov chains to
generate the final chord progression. Section 2 presents
the details of each of these system modules.

To demonstrate and evaluate the system, we train
the system on three songs of the British rock band, Ra-
diohead, and generate chord progressions for the fourth.
The original accompaniment of the fourth piece serves as
ground truth. Section 3 presents the results of the experi-
ment and system evaluation.

1.1 Related Work

Automatic accompaniment as a harmonization problem
has been studied for more than a decade. Natural Lan-
guage Processing techniques, such as n-gram statistical
learning, have been applied to the learning of musical
grammars for harmonizing music in the style of the seven-
teenth century (Ponsford et al., 1998). Evolutionary tech-
niques, such as Genetic Algorithms, have been proposed
and implemented in the generating of four-part chorales
(Phon-Amnuaisuk et al., 1999). Phon-Amnuaisuk and
Wiggins (1999) compared the results between genetic al-
gorithms and a rule-based system for solving a four-part
harmonization problem, and found that the rule-based
system performed better than the one employing genetic
algorithms. Other techniques, such as Hidden Markov
Models, have also been utilized in the harmonization of
chorales (Allan and Williams, 2005).

Chord progressions, transitions, and resolutions in the
harmonization of pop-rock music have also been studied
by musicologists and music theorists. Instead of using
traditional roman numerals, Kochavi (2002) and Capuzzo
(2004) used the neo-Riemannian framework for analyzing
the chord transitions in pop-rock music as transformations
on the tonnetz, thus demonstrating a viable representation
and robust grammar tool that accounts for tonal ambigui-
ties caused by modal mixture in pop-rock music.

Most music computational methods adopt sequential
processing in time, i.e., processing the note/bar that occurs
earlier before processing the next note/bar. When sequen-
tial processing is not required, we have the advantage of
selecting the process order in a way that best benefits the
task at hand. In the proposed system, instead of comput-
ing sequentially, we assign chords first at the checkpoints,
then determine the chord progressions in the bars between.

Similar computational ideas can be found in Chew and
Wu (2005), where the separating of pitches into different
voices is done through the connecting of maximal voice
contigs, where the solution is certain.

2 System Description

This section provides the details of the proposed hybrid
system for automatic accompaniment. The system and
data flow diagram is shown in Figure 1. The system con-
sists of three major parts performing the following tasks:
chord tone determination, triad construction and check-
points setup, and chord progression generation. Chord
tone determination, described in Section 2.1, chooses the
chord tones from the melody. Based on the chord tones
reported by the previous module, triads are first used to
harmonizing the parts of the melody that contain notes
identified strongly as triadic chord tones. The details for
triad assignment are shown in Section 2.2.

The third part of the system, described in Section 2.3,
is responsible for generating the chord progression for
the entire melody. Based on the triads assigned in the
previous module. All possible progressions between any
two of these triadic checkpoints are generated by apply-
ing neo-Riemannian transforms. We use a tree structure
to represent the possible paths, and a pruning algorithm
to remove paths containing disallowed transitions. The
final chord progression is created by considering the con-
ditional probabilities of all possible paths as represented
in a Markov chain.

melody

chord tones

Chord Tone Determination

Triad Construction/Checkpoints Setup
checkpoints
(triads) IV IV IV

Chord Progression Generation

IV IV IV IV IVI
iv

I
iv

IVsus2

IV IV I I IV IVsus2chord prog.

Figure 1: The data flow and system modules for automatic
accompaniment

2.1 Chord Tone Determination

The chord tone determination module classifies notes in
each bar into chord tones and non-chord tones. We sepa-
rate this module from the next one, chord determination,
for a few reasons: chord tone classification becomes sim-
pler when one does not consider the relations between ad-
jacent chords; this module also learns the melodic harmo-
nization style of each bar; and, new chords (chords not in

Computational Creativity 2007

58

the training examples) can still be constructed in a consis-
tent style. For example, a sus4 chord can still be produced
by adding the 4th note to the basic triad if the 4th note is
reported as a chord tone, even if the sus4 chord does not
appear in the training data.

We apply machine learning techniques to determine
the chord tones. This module consists of a Support Vector
Machine (SVM), which is responsible for selecting chord
tones from the melody in each bar in order to learn the
types of melodic harmonization decisions made typically
by the particular band based on the examples provided. In
the learning stage, each note in a bar is represented by the
seventeen attributes described in Section 2.1.1; the ground
truth is provided by the rhythm guitar chords in the origi-
nal lead sheet. In the testing stage, the module classifies a
note as a chord tone or non-chord tone based on the sev-
enteen attributes of the melodic representation.

The output of the chord tone determination module is a
list of notes that should be considered chord tones in each
bar of the test piece. Given the output list, a few possible
chords can be chosen as harmonization candidates.

2.1.1 Melody Representation

We use seventeen attributes to describe each melody note
in a bar. The meanings of these attributes are shown in
Table 1. We represent each pitch as a numeric pitch class,
numbered from zero to eleven, and normalized so that the
tonic is zero. The duration represents the length of the
pitch class in beats. The next four attributes describe the
scale relationships among the pitch classes in the bar, and
include the presence of the upper and lower neighbors,
the third, and the fifth. We only consider the intervals of
thirds and fifths because neo-Reimannian operations are
based on triads, even though they have been extended to
include seventh and ninth chords transitions (see Kochavi
(2002), Capuzzo (2004).)

Table 1: Attributes for melodic representation

Attribute Meaning
Pitch class (pc) numeric pc, tonic normalized to zero
Duration note duration (in beats)
Upper neighbor pc one scale step above present?
Lower neighbor pc one scale step below present?
Third pc three scale steps above present?
Fifth pc perfect fifth above present?
Metric strength 1 note on metric strength level 1?
Metric strength 2 note on metric strength level 2?
Metric strength 3 note on metric strength level 3?
Metric strength 4 note on metric strength level 4?
Metric beat 1 note on beat 1?
Metric beat 2 note on beat 2?
Metric beat 3 note on beat 3?
Metric beat 4 note on beat 4?
Phrase Position start, middle, end or bridge
Number of pc’s total number of pc’s in bar
Odd/Even bar note in odd or even bar in phrase?

The next eight attributes relate to metric information.
The metric strength attribute shows the metric strength

(frequency of onsets on that position in the bar, remi-
niscent of the inner metric calculations described in Volk
(2002) and Chew et al. (2005)) of the pulse on which the
note resides. The metric beat attribute records the metric
position in the bar according to the time signature. The
phrase position in the training data is manually annotated
as: start, middle, end, or bridge (an interlude segment be-
tween two phrases.) The last two attributes provide infor-
mation on the number of pitch classes in the bar, and the
whether the bar count is odd or even within the phrase.

2.2 Triad construction and checkpoints setup

With the list of chord tones in each bar, we assign tri-
ads to harmonize each bar. Triads are the basic building
blocks for more elaborate chords. In triad assignment, we
appoint chord tones with attributes that strongly support
their being members of a triad, such as chord tones having
their Third present in the same bar, or chord tones having
their Third and Fifth in the same bar. If a chord tone can
be harmonized by a major as well as a minor triad, chord
selection is determined based on the conditional probabil-
ities calculated during the learning stage.

By using the selected chord tone checkpoints, we first
determine the chords for the bars with strong evidences
for harmony choice independently of the bars with less
evidence for harmonicity. A cadence is a typical example
of such a checkpoint. These checkpoints act as the stable
points for starting the harmonization process. A wrong
chord at a checkpoint dramatically reduces the quality of
the song’s accompaniment. For instance, incorrect har-
monies at a cadential checkpoint can easily result in audi-
tory discomfort.

The setting up of checkpoints divides the harmoniza-
tion task into smaller sections of chord series generation.
Instead of finding a chord progression path for the en-
tire melody, we generate a suitable path of chord progres-
sion between each pair of the adjacent checkpoints. This
setup not only makes the computation efficient, but also
enables us to break the sequential order for processing
music. For example, cadential checkpoints help to ensure
proper chord resolutions at phrase endings.

2.3 Chord progression generation

This section describes the assignment of chords at the
chord tone checkpoints, and between checkpoints.

2.3.1 Chord candidate selection

When the choice for triad assignment is clear, we set the
accompaniment chord for that bar to this triad. If the chord
tones cannot be harmonized by any one triad, an extended
seventh chord will be considered. If the chord tones can-
not be fully covered by any triads nor seventh chords, then
a compound chord, consisting of pitches from a cluster of
chords, will be constructed in order to cover as many of
the chord tones in the bar as possible.

A compound chord is constructed based on distance
(number of neo-Riemannian transforms) in the chord
space shown in Figure 2. For example, the chord pair
(I, vi) is a cluster of two chords with a neo-Riemannian

Computational Creativity 2007

59

distance of one. The cluster having the shortest total inter-
chord distance is chosen as the compound chord, and the
function of this chord is determined later based on the
context; the determination of context will be described in
Section 2.3.2. If there are multiple clusters with the same
shortest distance that cover all the chord tones in a bar,
then all possibilities are kept as potential candidates.

The new chord construction mentioned above extends
the system’s vocabulary of chords so that it is capable
of harmonizing the melody using new chords not in the
learning examples. The system can also generate chords
that are neither triads nor seventh chords, but are chords
that can be frequently found in popular music, if the chord
tones contain sufficient information. For instance, the
Fsus4 chord, consisting of the pitches {F, B�, C}, can be
covered by the cluster (F, B�), i.e., (IV, �VII) in the key
of C major, and is functionally regarded as a subdominant
in chord transforms. The extra note, B�, will not sound
incongruous, as long as it is resolved correctly, according
to neo-Riemannian transformations.

2.3.2 Neo-Riemannian transforms

Neo-Riemannian transforms have been used by music the-
orists to analyze harmonic patterns and voice-leading in
pop-rock music in the recent decades (Kochavi, 2002; Ca-
puzzo, 2004). There are four fundamental operations in
neo-Riemannian transforms for describing the chord pro-
gressions: I (Identity, same chord), L (Leading-tone ex-
change), P (Parallel), and R (Relative), as shown in Fig-
ure 2. Although the biggest benefit provided by neo-
Riemannian transformations is modal music analysis, we
still represent chords in terms of roman numerals in this
paper for the following reasons: melodies sung by people
are, for the most part, still tonal music; and, the roman
numerals normalize all pieces by key, thus reducing the
number of pieces required in the learning stage.

 VII III VI II V

vii iii vi ii v

II V I IV bVII

ii v i iv bvii

IV bVII

bIII

bVI

bII

R P

L

Figure 2: Neo-Riemannian transforms in the chord space.

2.3.3 Tree construction and pruning

We use a tree structure to represent the possible chord pro-
gressions between two checkpoints. In the tree, each node

represents a chord that contains all the chord tones gen-
erated for that bar. A child node represents a chord that
results from a learned neo-Riemannian transform to the
next bar. The height of the tree equals the number of bars
between and including the two checkpoints.

To construct a valid tree for chord progressions be-
tween two checkpoints, three constraints must be satisfied.
The first two are local constraints, while the third one is a
global constraint: (1) the chord selected in each bar should
contain all the reported chord tones; (2) a mapping be-
tween two adjacent chords must be a valid (learned) neo-
Riemannian transform; and, (3) the root node chord must
be the first checkpoint, and a leaf node chord at the bottom
of the tree must be the second checkpoint.

If a branch cannot continue grow to the second check-
point, then the branch would not produce a plausible pro-
gression. We apply a pruning algorithm for removing
those stunted branches in order to make the chord pro-
gression calculations more efficient. The pruning algo-
rithm works as follows: if a node cannot establish a valid
link to any of the nodes in the next level, it is considered a
dead end, and it will report this information to its parent.
If a node, n, receives a “dead end” message from all of
its children, then n becomes a dead end too. The pruning
process continues backtrack until it reaches either a node
containing a live child or the root.

An example of a tree structure for chord progressions
is shown in Figure 2.3.3. The roman numeral at a node
shows the chord candidate for the bar at that level, based
on the reported chord tones for that bar. The circled nodes
are the checkpoints, which are harmonized by the I chord
in this example. Links between nodes (shown with ar-
rows) are created based on valid neo-Riemannian trans-
forms; the particular neo-Riemannian operations invoked
are shown in italics. The dashed arrows represent pruning
actions when a node cannot continue to grow to the next
level. In this example, a total of three valid chord progres-
sions are found: {I, I, V, V, I}, {I, I, iii, iii, I}, and {I, I,
iii, vi, I}.

I

I v

V

V ii

I VI

I LRP

I I

LR L

LR LR

LR LR R LL

iii

iii vi

I

RL

I IVvi

Figure 3: Example tree structure for chord progression.

It may be possible that no branches can be found that
connect the two checkpoints, due perhaps to errors in

Computational Creativity 2007

60

chord tone determination or to a sparse learning set. In
this situation, the generation of chord progression will be
split into two sub-problems. At each split, we allow an
arbitrary non-Reimannian transition. A possible heuristic
for selecting a split point considers the number of types
of neo-Riemannian transforms learned in bar transitions.
A bar transition having more possible chord transforms
is more likely to allow more flexible (possibly new) har-
monizations (transitions), and is thus a good candidate for
a split point. The worst case splitting occurs when the
chords selected in each bar cover the chord tones, but no
neo-Reimannian transform exist to transition between the
bars.

2.3.4 Markov Chains

After constructing the tree, we can readily extract all suc-
cessful paths between the checkpoints. Each of these
paths can be considered a Markov chain, and the likeli-
hood of that path can be calculated from the conditional
probabilities in the Markov chain.

Assume we have a path with n chords, {C1, . . . , Cn},
where each chord is indexed by its bar number. The prob-
ability that this chord progression occurs can be expressed
as:

P (C1, . . . , Cn)
= P (C1)P (C2|C1) . . . (Cn|Cn−1)
= P (C1)P (NRO1,2) . . . (NROn−1,n), (1)

where NROi−1,i is the neo-Riemannian operation be-
tween chord Ci−1 and Ci. Equation 1 accounts for the
probability of the chord progression, but it ignores the
phrase information for each bar. In order to generate a
chord progression that better reflects the phrase structure
of the melody, we modify Equation 1 to include the phrase
position information of each bar:

P (C1, . . . , Cn|B1, . . . , Bn)
= P (C1|B1)P (C2|C1, B1, B2)

. . . P (Cn|Cn−1, Bn−1, Bn)
= P (C1|B1)P (NRO1,2|B1, B2)

. . . P (NROn−1,n|Bn−1, Bn) (2)

where Bi is the phrase position for bar i, which falls into
one of four possible categories: start (S), middle (M), end
(E), and bridge (B), as described in Table 1. For example,
P (LR|S, M), the probability that neo-Riemannian oper-
ations LR occurs from a starting bar to a bar in the middle
of the phrase, can be calculated from the examples as fol-
lows:

P (LR|S, M) = P (LR, S → M)/P (S → M) (3)

The first term, P (C1|B1), in Equation 2 is redundant if
C1 is a checkpoint at the first bar. When C1 does not
occur at the first bar, we may have multiple choices for
the chord there, and the term P (C1|B1) does affect the
resulting progression. If the conditional probability of all
chord candidates are zero, due to limited learning pieces,
we substitute the term P (C1|B1) with P (C1) instead.

3 Evaluations and Results

In this paper we test our system on music by the British
rock band, Radiohead. The experiment design and results
are detailed in the following sections.

3.1 Experiment design

We consider four songs by Radiohead: Creep, High and
Dry, Fake Plastic Trees, and Airbag for our accompa-
niment generating experiment. We consider these four
songs similar, not in terms of particular musical features
such as melody, chord progressions, and rhythmic pat-
terns, but according to general properties, for example,
all four songs were published in their first three albums,
they are each relatively slower than other songs in the
respective albums, and each song shows a clear acoustic
rhythm guitar accompaniment. However, we did consider
one musical fact: all four songs are in major keys; we
considered this fact important because strategies of chord
progressions would be very different in major vs. minor
keys.

We obtained the lead sheets for the songs from the
website http://www.gprotab.net. For each score, we ex-
tracted the two main tracks, melody and rhythm guitar,
and removed all other instruments. We manually verified
the chords, selecting the main chord for each bar, and dis-
carding ornamental chords and other musical elaborations
for the purpose of training and evaluation. Phrase infor-
mation for each bar and key information are also added to
the annotation. The repeats in each song are truncated to
simplify the process.

The number of appearances of chords along with their
phrase position ∈ {S, M, E, B} of the four songs are
shown in Figure 4a through 4d, where chords are repre-
sented as roman numerals, i.e. their function within the
key. The phrase position M is furthered specified as being
an odd or even bar, {Mo, Me}. Notice that the choices of
chords and their distributions are very different from one
song to another.

To test our system, we held out one song as the test
melody, and used the remaining three training examples.
For training, the melodies (represented as described in
Section 2.1.1) as well as the chords are given to the chord
tone determination module for the learning of the harmo-
nization strategy. The conditional probabilities of chord
appearances and neo-Riemannian transform are also cal-
culated from the training examples at this stage. For test-
ing, only the melody is given to the chord tone deter-
mination module. Based on the reported chord tones, a
chord progression is generated according to the process
described in Section 2.3.

3.2 Case Study 1: Creep

First, we choose Creep as the test song, and trained the
system using the other three. Using the original accompa-
niment for Creep as ground truth, the overall correct rate
is 81.48% in this 54-note sample. The statistics on the
chord tone determination, such as true positive rate (TP),
false positive rate (FP), precision (Prec.), recall (Rec.),
and F-measure (F), are shown in Figure 5. Notice that the

Computational Creativity 2007

61

false positive rate is much lower than the true positive rate.
Thus, by generating accompaniment according to the re-
ported chord tones, the harmonization process should still
result in the original chords.

Creep

High and Dry

 Airbag

Fake Plastic Tree

Figure 4: Chord distributions in the original songs

Figure 6 shows the generated chords as well as the
original harmonizations for Creep. In the 26 bars, 9 of
the generated chords are identical to the original. Most of
these chords occur at the start of phrases beginning with a
I chord, or in the middle of a phrase with IV chord. In the
remaining bars, 5 generated chords are the parallel ma-
jor/minor of the original ones, and 3 generated chords are
related by a fifth to the original ones.

With regard to chord tone determination, there are
only two false positives, pitch A in bars 1 and 13. In
bar 1, the reported chord tones are G, A, which can be
harmonized by the cluster of chords IV and the ii of IV
in the chord space shown in Figure 2. This generated
compound chord, IV+2, still has the function of IV, and is
successfully resolved by the LR operation to the I chord
in the next bar. In bar 13, the reported chord tones are B,
A, harmonized by the iii+2 chord, which happen to be a

Figure 5: Chord tone determination statistics − true pos-
itive (TP), false positive (FP), precision (Prec.), recall
(Rec.), and F-measure (F) − for Creep and High and Dry.

seventh chord in this case.
The original harmonization contains only four chords,

repeated periodically in every phrase. The chord B (III)
and Cm (iv) are missing in the generated chords. Instead,
their parallel major/minor are chosen. We can explain the
result by examining the chord transitions in the training
songs. In Figures 4b, 4c, and 4d, no chords are related by
parallel major/minor in each song. Therefore, no parallel
(P) neo-Riemannian operations are learned at the training
stage. Although the chord iii and IV are more commonly
used than III and iv, and no non-scale pitches such as D�
and E� appear in the melody, the generated chords here
may lack some of piquant harmonies of the original. For
the bars labeled as cadences (bars 8, 16, 24, and 26), the
chords (G, C, G, G) are generated instead of (Cm, Cm,
Cm, G) as in the original.

Creep

6

B/G C/C C/C Cm/G Cm/G G/G

Melody

Original/Generated chords

Cm/C G/G G/G

B/Bm B/Em

C/C
C/C Cm/G Cm/G G/D

11 G/D B/Bm+2B/D+3 C/Em C/G

16
Cm/C Cm/C G/G G/G B/Gmaj7

21

Figure 6: Original/Generated chords for Creep.

3.3 Case Study 2: High and Dry

We choose High and Dry as our second test piece. The
overall correct rate, when comparing to the original lead
sheet, is 70.49% on this 61-note sample. The statistics in

Computational Creativity 2007

62

Figure 5 show that chord tone determination fared better
in Creep than in High and Dry, especially for the false
positive rates.

Three types of false positives are found in the chord
tone determination. The first type occurs in bars 2 and 10,
where the pitch C� is wrongly reported as a chord tone.
This results in the choice of the chord A instead of Asus2.
The second type happens in bar 22, where the pitch G� is
reported falsely as a chord tone. However, the resulting
compound chord E+4 includes all the pitches in Asus2.
The third type occurs in bars 16 and 18. The wrongly
reported chord tone F� results in a humdrum but straight-
forward chord progression from bars 16 through 18.

High And Dry

Melody

Original/Generated chords
B7sus4/A Asus2/A E/E E/E

Asus2/Asus25
B7sus4/A E/E E/E

21

9 B7sus4/A Asus2/A

E/E E/E

13

B7sus4/A Asus2/A E/E E/E+2

B7sus4/E+217
Asus2/E+2 E/E E/E

B7sus4/E Asus2/E+4 E/E

Figure 7: Original/Generated chords for High and Dry.

Figure 7 shows the generated chords as well as the
original harmonization of the song High and Dry. In the
23 bars, 11 of the generated chords are identical to the
original. An additional other 6 of generated chords either
show the same basic function (bars 2, 10, 14, and 16) or
cover the pitches in the original chords (bars 18 and 22).
The original harmonization shows regular four-bar chord
pattern: B7sus4 → Asus2 → E → E. A similar structure
can be observed in the generated chord progressions: A
→ A → E → E. The chord E (I) is generated for all the
bars labeled as cadences (bars 3, 7, 11, 15, and 23), as in
the original song.

4 Conclusions and Discussion

In this paper, we proposed and demonstrated a hybrid ap-
proach to the building of an automatic style-specific ac-
companiment system. The system aims to make song
writing accessible to novices and experts alike. Imple-
mentation details of song writing such as chord assign-
ment and arrangement often requires years of musical
training and practice, and may prevent less experienced
song writers from focusing on the expression of their mu-
sical ideas. Our objective is to design a system that can
not only provide proper chord progressions to melodies
created by novices, but also present new harmonization

ideas to experts. To this end, we have proposed a sys-
tem that models the harmonization process in a sequence
of logical steps, and generates chords with proper reso-
lutions. The system is designed not only to allow users
to concentrate on higher level decisions and to focus on
creative ideas, it also serves as a systematic model for the
process of generating accompaniment.

In the two test examples, we demonstrated the sys-
tem’s ability to create new chords, while maintaining the
proper chord transition as in the provided examples, in
accordance to the phrase structure of the melody. We
find that the system generates chords closely related to the
original, and the resulting chord transitions meet our ex-
pectations based on the melodic phrase structure. We also
observed a few challenges in the chord generating pro-
cess. For example, the melody of Creep does not contain
strong cues for harmonization, and the system harmonized
the same melody in different bars using different chords.
Sometimes, one may choose to include chord tones that do
not appear in the melody to improve voice-leading, or for
ease of fingering on the instrument (e.g. guitar tablature);
this are aspects which are currently not captured in the
system. Neo-Riemannian operations are based on triads,
and are not flexible for generating chords such as IVsus2
with exact pitches. Finally, symmetric phrase structures,
reflected for example by regularly repeated chord patterns,
are difficult to generate when using only local bar-by-bar
analysis. Future systems could incorporate such higher
level structures.

Acknowledgements

This research has been funded by the Integrated Media
Systems Center, a National Science Foundation (NSF)
Engineering Research Center, Cooperative Agreement
No. EEC-9529152, a University of Southern California
Women in Science and Engineering (WiSE) Digital Dis-
sertation Fellowship, and by the NSF grant No.0347988.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors,
and do not necessarily reflect the views of NSF or WiSE.

References

Allan, M. and Williams, C. K. I. (2005). Harmonising
chorales by probabilistic inference. In Saul, L. K.,
Weiss, Y., and Bottou, L., editors, Advances in Neu-
ral Information Processing Systems: Proceedings of
the Neural Information Processing Systems Conference
2004, Vancouver, B.C., volume 17, pages 25–32. MIT
Press, Cambridge, MA.

Capuzzo, G. (2004). Neo-riemannian theory and the
analysis of pop-rock music. Music Theory Spectrum,
26(2):177–199.

Chew, E., Volk, A., and Lee, C.-Y. (2005). Dance music
classification using inner metric analysis: a computa-
tional approach and case study using 101 latin american
dances and national anthems. In Golden, B., Ragha-
van, S., and Wasil, E., editors, The Next Wave in Com-
puting, Optimization and Decision Technologies: Pro-
ceedings of the 9th INFORMS Computer Society Con-

Computational Creativity 2007

63

ference, volume 29 of Operations Research/Computer
Science Interfaces, pages 355–370. Springer, Annapo-
lis, MD, US.

Chew, E. and Wu, X. (2005). Separating voices in poly-
phonic music: A contig mapping approach. In Wiil,
U. K., editor, Computer Music Modeling and Retrieval:
Second International Symposium, CMMR 2004, Esb-
jerg, Denmark, May 26-29, 2004, Revised Papers, vol-
ume 3310 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, Berlin, Germany.

Kochavi, J. (2002). Contextually Defined Musical Trans-
formations. PhD thesis, State University of New York
at Buffalo, Buffalo, New York.

Phon-Amnuaisuk, S., Tuwson, A., and Wiggins, G.
(1999). Evolving music harmonisation. In Dobnikar,
A., Steele, N. C., Pearson, D. W., and Albrecht, R. F.,
editors, Artificial Neural Nets and Genetic Algorithms:
Proceedings of Fourth International Conference in Por-
toroz, Slovenia. Springer, Vienna, New York.

Phon-Amnuaisuk, S. and Wiggins, G. (1999). The four-
part harmonisation problem: A comparison between
genetic algorithms and a rule-based system. In Pro-
ceedings of Society for the Study of Artificial Intelli-
gence and Simulation of Behaviour Convention, Edin-
burgh, Scotland.

Ponsford, D., Wiggins, G., and Mellish, C. (1998). Statis-
tical learning of harmonic movement. Journal of New
Music Research, 28(2):150–177.

Volk, A. (2002). A model of metric coherence. In Pro-
ceedings of the 2nd Conference on Understanding and
Creating Music, Caserta, Italy.

Computational Creativity 2007

64

On the Meaning of Life
(in Artificial Life Approaches to Music)

Oliver Bown
Centre for Cognition, Computation and Culture,

Goldsmiths College, University of London,
New Cross, SE14 6NW, UK
o.bown@gold.ac.uk

Geraint A. Wiggins
Centre for Cognition, Computation and Culture,

Goldsmiths College, University of London,
New Cross, SE14 6NW, UK
g.wiggins@gold.ac.uk

Abstract

Artificial life (alife) is of interest to computer musicians
due to its generative potential and the potential for pro-
ducing lifelike behaviours for musical interaction. In this
paper we consider how future developments in alife music
could have equal bearing on the major themes in alife as
on the music it produced. We focus on a discussion of the
socio-cultural dimensions of making music with technol-
ogy and argue that modern popular music making prac-
tice outside of individualist academic research projects is
an important context for the development of alife music
systems. This discussion introduces a number of themes
about how computational creativity and human creativity
may interact as the field progresses.

1 Introduction

Artificial life (alife) and artificial intelligence (AI) exist
as independent subjects: put crudely, life does not require
intelligence (the intelligence explored by good old fash-
ioned AI) (Brooks, 1990), and intelligence (of that same
kind) does not require life. Alife as a whole is unambigu-
ously dedicated to the theoretical study of life, and the
experimental study of lifelike systems in silico. Any no-
tion of alife music (by which we mean composition and
performance using alife systems, rather than the scientific
study of music as a system of interaction using an alife
methodology) lacks this purity of focus; it is a peculiar
hybrid. And yet it is also an emerging field, alongside
the use of alife in other arts, which sees great potential in
the application of broad computational questions of life
within artistic practice, including with respect to the mim-
icking of human creativity. The purpose of this paper is
to untangle the divergent goals of alife and regular music
practice and to attempt to focus on a potential common

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

interest in terms of a strong notion of alife music1.
It is easy to accept a notion of music inspired by

alife systems, or music that is generated by alife sys-
tems, and it is clear that the patterns generated by such
systems are likely to have some degree of musical in-
trigue, both in their local temporal structure and in their
ability to generate variation (Miranda, 2001; Berry and
Dahlstedt, 2003). But interesting musical structures can
also, according to other music practitioners, be made by
monitoring atmospheric conditions, cosmic rays, or by
recording the sound of wind-induced vibrations on Lon-
don’s Millennium Bridge. Endlessly generative (thus ar-
guably creative) systems can also be produced by less ex-
otic approaches than alife, including the simple combi-
natoric approaches developed by artists like Brian Eno,
for whom a specific kind of musical style, ambient mu-
sic, was required in order to facilitate acceptable gen-
erative pieces (Eno, 1996) (also see Jem Finer’s Long-
player, http://www.longplayer.org). Alife-inspired or
alife-generated music has a place in the context of these
existing approaches to music, where interesting natural
dynamics and powerful generative methods are appropri-
ated to musical ends. In this paper we will be interested
in discussing a coming together of alife and music that
is stronger than this, in an attempt to approach long term
issues in the development of creative systems.

Alife approaches to music can also fall closely in step
with more general AI approaches to music in which the
designer’s goal is to build a system that achieves some
more or less precisely specified musical capacity. Alife
is concerned with evolutionary and adaptive systems, and
adaptivity is closely associated with the essential nature
of life because it defines a system that is able to respond
to its environment in a beneficial way, and is therefore
able to survive. We can use artificial evolution or learning
techniques to generate systems that function as musical
agents, and this is very interesting because in doing so
we have defined an artificial environment, and within that
environment the criteria for its inhabitants’ survival. But
this environment is only partly artificial. The ‘artificial’ of
pure alife is an artificial built exclusively to interrogate the
real, but in music it interacts and overlaps with the real; the
environment of real musicians making real music. This is

1By this we mean a strong notion of alife music rather than
the notion of strong alife applied to music, although as this dis-
cussion unfolds some may have the sense that these are the same.

Computational Creativity 2007

65

the starting point for the discussion in this paper. What is
the meaning of life in these instances?

2 Alife Music in Practice
The first author’s interest in alife music stems from an in-
terest in realtime interactive musical agents, in particular
agents that are sufficiently complex that they cannot be
controlled directly but must be interacted with, where this
interaction provokes a sense of engagement that is mu-
sically pleasing, that has some of the characteristics of
interaction with another live musician. Many commenta-
tors have discussed these issues in the emerging domain of
live algorithms (e.g., Blackwell and Young, 2004; Collins,
2006).

Strong alife music systems are music systems that mu-
sic producers and consumers will genuinely feel are au-
tonomous and lifelike, and the above two qualities are,
we assume, necessary attributes of such systems. They
are also necessarily subjective. A critical question is
whether these systems need to emulate human behaviour,
or whether there are other modes of behaviour that can
evoke a sense of autonomy in musical contexts. Can we
have strong alife music whilst bypassing many of the chal-
lenges of understanding human intelligence? It is chal-
lenging to imagine musical agents that are not human and
also do not explicitly mimic human behaviour but that are
convincingly autonomous and lifelike: no such thing ex-
ists today.

The first author’s personal attempts at alife music in-
volve the use of Continuous-Time Recurrent Neural Net-
works (CTRNNs) (Beer, 1996; Slocum et al., 2000) in
live musical performance. The CTRNNs act as simple
decision engines in a complex performance patch built
in Max/MSP (www.cycling74.com), which pre-processes
audio input for feeding into the inputs of the CTRNN and
maps the CTRNN’s output to generate audio in various
ways. So far all of the CTRNNs used are generated by
artificial evolution using simple hand-written fitness func-
tions which express the artists own impressions of what
would make interesting musical behaviour. This artificial
evolutionary environment is very different from the real
environment in which the artist actually exists as a musi-
cian. Whether explicitly demoing this system or just using
it in the context of performance, during performance the
system is inevitably squeezed to fit into a musical goal.

Thus it is common to override or tightly constrain the
behaviour of a system during a performance. Whilst the
simulated environment represents a first approximation of
what a musician expects to be good musical behaviour,
there is hardly any overlap between the CTRNN’s simu-
lated evolutionary environment and the real environment
in which the musician acts. The latter is also very many
orders of magnitude more complex than the former. It
would seem natural to look back over the design of the
entire system and ask how one could adjust this design
to make the system more successful. This is the point at
which a strong alife approach to music must differ funda-
mentally from other AI approaches.

Consider the iterative process that starts when any mu-
sic system is first tested in a real performance context. It

would be unusual to have pre-specified quantitative ele-
ments to measure the system. Instead it is normal to re-
main open to the possibility that the system had unex-
pected positive qualities, even if these are extremely mod-
est qualities. In general we can’t predict how people will
make use of the system, or what they will make of it, es-
pecially if the system is intended to be complex and full
of surprises.

Two very simple observations have emerged from
working with CTRNNs in a performance context. Firstly,
a modest unexpected quality: the activity of the network
is valuable in live solo laptop performance even if only
to produce loosely synchronised activity, meaning activ-
ity which has no precise timing or decision-making de-
mands. This is like having an extra set of hands to control
some parameters in a laptop performance. This is a rel-
atively unambitious use of the network, not dissimilar to
drawing data from environmental conditions or any of the
other examples discussed in the introduction. Our point
for the time being is that it is a slight re-appropriation in
terms of how one conceives of the network and how it is
used. Secondly, expectations by third party musical per-
formers about what the network can or should do can be-
come problematic. By disguising the network’s behaviour
as some relatively direct consequence of a human’s activ-
ity (the hidden activity of the laptop performer), these ex-
pectations are no longer relevant, and this has proven use-
ful. This is not to say that the CTRNN has descended to
this level of use, in some cases it has been possible to bring
it to the fore and to step away from controlling it, whilst in
other cases it is more appropriate to subsume its behaviour
under other musical goals and activities. Rather, it proves
that the CTRNN serves some purpose as a mere tool, with
just an inkling of something more worthy of the term al-
ife. This demonstrates what we would call the cybernetic
flexibility of music as a domain of human activity. In the
following section we aim to provide some background to
the proposal that this flexibility can and should be cap-
tured and used to greater effect.

3 Life
In nature we often view organisms as having adapted to
their environments through evolution by natural selection.
This is widely understood to be a simplification, albeit one
that is highly convenient and often sufficiently accurate.
In reality all organisms alter the environment for all other
organisms, all evolving, all at once in one large open dy-
namical system. Lovelock’s Daisyworld model provides
a definitive proof of concept for this point of view (Love-
lock, 1979). The model consists of a planet heated by a
sun, and two types of daisies with different heat absorp-
tion properties and temperature preferences. Running the
model shows the relative populations of daisies stabilis-
ing in an arrangement in which the local temperature is
optimal for each of the daisy types. Daisyworld’s virtual
daisies could easily have given the impression to naive ob-
servers of having adapted to their environment, but in fact
they have altered it through a simple thermo-regulatory
process.

The implications of considering the effects of this

Computational Creativity 2007

66

true coevolutionary process are now beginning to be ex-
plored and will continue to drive theoretical biology into
the future. For example, Owings and Morton’s (1998)
new approach to animal vocal communication depicts a
natural history full of organisms (assessors) whose nat-
urally evolved senses have become a focus of exploita-
tion by others (managers); owls, for example, that trick
badgers into thinking that they are snakes by mimicking
snake sounds (the owls don’t need to know anything about
snakes, or why they make these sounds). This supersedes
the older view that implicitly accepted the evolutionary
centrality of an animal’s senses. Rather, the senses are
reconsidered as a context for evolution elsewhere.

Our planet’s biodiversity, the celebrated evidence for
nature’s own creativity, derives from a divergent evolu-
tionary process in which different species react to each
other through evolutionary change, rather than from a pro-
cess, as in most artificial evolution for engineering’s sake,
which generally aims for convergence on a best solution;
nature holds no such requirement on any of its constituent
organisms. It is this coevolving process that in some
way drives the increase in complexity evidenced in na-
ture’s history, where we see not only ingenious solutions
to problems, but the creation of new niches and survival
challenges themselves, and gentle shifts of focus from one
evolutionary process to the next.

How can we begin to bring these kinds of issues into a
consideration of alife in the context of music? If an impor-
tant fact about nature is that it places no strict demands on
what life looks like and how it behaves, then how can we
reconcile our desire to embed alife in a context in which
our own aesthetic requirements are positively stifling?

There appear to be three potential views on this prob-
lem. Firstly, the above concerns are excessive and place
too high a demand on what we call alife. Engineering-
oriented artificial evolution can produce surprising cre-
ative solutions to problems and systems that are complex
enough that their operation is rendered opaque. Alife is
meaningful even in massively constrained, human-centric
situations. Secondly, going the opposite way, the strong
ambitions of alife music are genuinely flawed; the alive-
ness and, by implication, the autonomy of a system is
hampered by the constraints of an evolutionary context
allowing only one course of action: to produce pleasing
music or musical behaviour. Natural evolution would not
work under such constraints, and so the notion of alife in
the context of music is a weak one at best.

The third view, which we prefer, breaks the stalemate
of this opposition. It proposes that human musical prac-
tice is capable of providing a suitably rich environment for
divergent, open-ended evolution to take place. In aspiring
to the environmental freedom of nature we must find ways
to allow as much variety and flexibility as possible into
our demands for artificial musical systems, neither lim-
ited to the taste of one human participant, nor static and
unresponsive to the actions of agents. In aspiring to the
complexity of nature, we must facilitate countless contin-
ued repeated interactions between agents and their envi-
ronments.

These new requirements can be summed up in the pro-
posal that the application of alife in music has suffered

from an individualistic approach. This individualism is
manifest in two ways: the individualism of the user, such
as in the case of interactive genetic algorithms where a sin-
gle user is expected to steer an evolving system towards
the fulfilment of their musical requirements; and the in-
dividualism of the system’s purpose, where we assume a
musical purpose for our alife system in order to design it.

It may seem that eradicating the second of these two
individualisms would ground ones efforts immediately. Is
there any sense in producing an alife music system and
then deciding how to use it? In the following section
we suggest that this is possible if we look more closely
at questions in common music practice and the socio-
technological conditions in which music exists.

4 Music Systems, Practice, Sociality and
Technology

Strong alife music cannot be about training a system to
achieve a pre-specified goal in a pre-specified style. In this
case, the less a system’s behaviour has been determined by
a single individual’s expectations, or with respect to a sin-
gle musical function, the freer it is to take on the proper-
ties of an alife music system, rather than an AI or machine
learning system. This assertion is strong but not defeatist.
However it does jar in various ways with certain instances
of the relationship between music, technology, individuals
and groups.

To take an example of early work in intelligent music
systems, in discussing the role of computers in music per-
formance, Robert Rowe states that “[the elimination of hu-
man performers] is undesirable, beyond the purely social
considerations, because human players understand what
music is and how it works and can communicate that un-
derstanding to an audience, whereas computer performers
as yet do not.” (Rowe, 1993). This is an agreeable state-
ment, except that there is no way of corroborating the sim-
ple assertion that “human players understand what music
is and how it works”. How can one probe this statement
further? How do we know that it is true, or even what
it means? Rowe’s “as yet” proposes that computer per-
formers will arrive at a level comparable to human musi-
cal understanding. However, the performers that they aim
to imitate and perhaps to replace are entangled in a web of
relations and social concepts and structures that are suit-
ably versatile as to bring into focus this problem of their
understanding, and how it fits with problems of music and
understanding in general.

In our opinion the point of view captured here (which
we do not mean to associate explicitly with Rowe, but
see as a general view about how computational creativ-
ity is likely to unfold) does not truly acknowledge the di-
versity and strength of difference in approaches to music,
especially in new social and technological contexts. As
Rowe was writing this, the technology behind the tape
music approach that he was contemplating was escap-
ing the academic computer music world and initiating the
biggest revolution in popular music since rock and roll.
Contemporary Western dance music (encompassing gen-
res such as techno, house, garage, drum and bass, hard-
core, dubstep and many others) presents problems for any

Computational Creativity 2007

67

performance-centric view of music. Much dance music is
‘hand programmed’ by its producer and at no point during
its production or consumption does a performance take
place. And yet this is extremely expressive music2. If
there are clear examples of the widespread social accep-
tance of non-performed music, even if these examples are
based on new technology not possessing a long-standing
tradition, then the issue of performance must be under-
stood as a non-essential musical element. For some this
may be a relatively minor and unproblematic statement,
but it remains an outside point of view and one that is
rarely stressed.

But going deeper into the difference between live per-
formed music and studio-based composition, the problem
of autonomy in computer music systems becomes cen-
tralised through a notion of editorship. Imagine a human-
edited recording of a piece of computer generated music;
let us assume that you enjoy the piece very much, but you
have no idea what work was done by the human during the
editing phase. If your aim is to judge the musicality of the
artificial system, you will find this opacity of presentation
naturally quite unsatisfactory: judging a system implies
judging it in action. For this reason, live performance pro-
vides a context in which the evaluation of computer music
systems seems to make greater sense. In reality the same
problems of editorship still apply. We have described this
in the first author’s performance work above; the editor-
ship of any software activity generally takes priority. But
even in systems that are not tampered with during or af-
ter playback, human premeditation and planning are still
largely responsible for the ultimate aesthetic and content
of the music. Furthermore, through focusing on the mu-
sical performance a false boundary arises around the be-
ginning and end of a single performance event. We judge
individual human musicians over their careers, and only
some musicians in some contexts are valued on the con-
sistent brilliance of their live performances reciting pre-
composed music3. More recently, questions in computer
music have found themselves inexorably tied up with the
booming interest in improvised music, possibly for obvi-
ous reasons of suitability – what better test of musician-
ship than the coming together of the live and the composi-
tional? – but possibly also due to trends in music that are
politically broader and more profound, such as discussed
by Lewis (2002).

From the point of view of analysing computer mu-
sicianship, therefore, it seems more appropriate to state
that there is no difference between what is live and what
is composed; both can be regarded as performances and
neither can be judged for their technological merit from
a single instance4. And whilst the humanness of human

2We say this with some caution because a lot of performance
may be associated with the music in clubs or on music videos,
and the music may sample other musical performances, and thus
disguise human performative involvement in its otherwise me-
chanical production. Despite this we hold that there are exam-
ples of purely non-performative dance music production, as well
as electroacoustic and computer tape music.

3Sometimes because they achieve an almost superhuman
consistency in their performances, which would make for an
ironic criterion for the evaluation of computer performers!

4One might argue that an exception lies in cases where, for

musical performance is clearly highly regarded by most
people, it is important to acknowledge the possibility that
this is not because human musical performance is indeli-
bly written into human music perception, but because we
are, for obvious reasons, most familiar with human mu-
sical performance, and, as Rowe says, there is presently
nothing that approximates it. As is widely observed, in-
dividual musical tastes vary to the point of mutual exclu-
sion, and musical styles follow a temporal dynamic that
is so rich that anyone should doubt the rigidity of musical
tolerance to stop at computer composed music. Mean-
while, socio-cultural factors reify the importance of hu-
man performance in music: even in studio produced mu-
sic, such as dance music played by a DJ, the visible act
of performance is relished, and the relationship between
the audience and that performer is viewed as critical. This
highlights the strong relationship between spectacle and
musical production, but also a key distinction. Perhaps
popular music will always need human performative el-
ements, but this apparently does not place a particularly
great constraint on how the music is actually produced.

The discussion of modes of musical production and
musical style in this section is aimed at drawing atten-
tion to the generally isolated and individualist use of most
computer music systems, including alife music systems.
In the previous section we argued that individualistic ap-
proaches to alife music do not sit well with the under-
standing that the autonomy of real living systems is con-
tingent on the flexibility with which nature provides what
Gibson dubbed affordances. This leads to the implication
that new approaches to musical production and style are
as crucial to the development of concepts of alife in music
as are direct advances in the field of alife and more lit-
eral developments in applying alife to music in individual
situations.

5 How Can We Do Strong Alife Music?
The above discussion would be heading for a completely
negative conclusion if it wasn’t for the fact that our tech-
nological environment is changing the way that people
make music, as well as aspects of our social organisa-
tion. Most importantly for a notion of alife music, as
music producers and consumers increase the degree to
which they create music in networked environments, they
increasingly contribute to an environment which is gen-
uinely rich in its capacity to generate affordances valuable
to evolving software systems. Musicians making music on
computers connected to the internet allow for music soft-
ware that shares information about these various musical
contexts. By linking up musical contexts in this way it
is possible to see beyond the individualist limitations dis-
cussed above, through the creation of a rich and diverse
environment. Then no single individual need determine
the fate of an alife system, and as a direct consequence of

example, a computer system evaluates a whole piece in order to
propose a modification to that piece. This is a process that cannot
be placed in a live context because it would require knowledge of
the future, suggesting a fundamental difference between live and
compositional contexts. But whilst this difference does indeed
exist, such cases do not undermine the assertion that computer
composition is essentially performative.

Computational Creativity 2007

68

this, alife systems need not be subject to any one single
functional expectation or interpretation.

Such an observation is not an original contribution by
this author. Amongst the various commentators who have
discussed the possibility of networked communities of
users interacting with communities of software agents, the
most significant effort has been made by the Hybrid So-
ciety (HS) project (Romero et al., 2003). The HS project
aims to explore approaches to artificial evolution in a rich
world of interaction generated from a group of individ-
uals interacting over a network, including the internet.
They point to the problem of fatigue associated with a
single user IGA approach, proposing that a multi-user ap-
proach is a potential solution to this problem. The HS
environment does not make any specific demands about
what its agents do, and how they are understood by its hu-
man users, except to define a general purpose interaction
paradigm. Thus the HS environment provides an appro-
priate framework for a strong alife music to develop, or at
least for interesting provisional research in this domain to
take place. However, it does explicitly require that soft-
ware agents and human users be viewed as equivalent and
equal actors in the network, both have the ultimate goal of
producing aesthetic artworks.

Although non academic enthusiasts are invited to par-
ticipate in experiments over the internet, the HS project
is strictly executed in an academic experimental manner;
participants get involved out of academic interest. This
is hardly a surprising state of affairs for current alife mu-
sic practice, but it is one that tightly limits the potential
user-base of any such system, and maintains the separa-
tion between real artists working in the real world and the
environment in which they interact when they turn their
attention to the HS project. For strong alife music the net-
work of potentially interested participants needs to not be
restricted by this constraint, and to diversify to the extent
of the diversity of current music practice. Also, in order to
further consolidate the valuable differences between alife
and AI, it is important not to conflate alife agents with hu-
mans. A master-pet relationship is a more fitting analogy
than one of equivalence.

To expand the user base of alife music software two
things need to happen. Firstly, regular music software
needs to go alife. That is, in normal musical contexts
certain elements should be recontextualised as adaptive
agents and should be able to gather data that informs the
design of new systems, that possibly replace old systems.
The most important first step to this is that it continues
to behave like regular software. Secondly, music mak-
ers need to open up to software that has erratic, unpre-
dictable, idiosyncratic behaviour. The crux of this paper
is that a common practice alife music that would satisfy
this second condition is feasible, already heavily active,
but contingent on the existence of music alife software
for its development. It is not necessary to try to define
how this common practice alife music would work, but
we can consider some questions about it. For this purpose
we juxtapose two sci-fi vignettes that capture the essential
differences between an imagined alife music and more tra-
ditional views of computer intelligence in music:

Sci-fi scenario 1: John is at the concert hall

setting up for his rehearsal. He opens two vio-
lin cases and a box containing the Z7 concert-
grade violin recital robot. He sets up the Z7’s
shoulder and arm mechanism on the stage and
mounts one of the violins on it. He plugs in
the Z7’s hardware controller to the shoulder and
arm mechanism, and also plugs in a microphone
which he points towards himself. He powers up
the hardware. A light turns on, red at first, then
green after a couple of seconds. The Z7 sounds
a pre-recorded note, and they begin tuning their
violins. . .

Sci-fi scenario 2: Mark has just got home
from school. He logs into his PC, connects his
electric guitar to the sound card and starts up
AudioLife 5.2. The program asks him whether
he would like to load an existing environment
from his local machine, or search online for ac-
tive environments. He choses to go online, and
the software provides a list of current active en-
vironments. He browses by category, finally set-
tling for CragFunk, and picks an environment at
random from the list. The program asks him if
he would like to chose any MIDI or audio files
as source material for the software agents, the
alternative being that they generate their own
material from scratch. . .

The meaning of life of the alife music system in
the second scenario does not come from the fact that
it is performing live in a context that is accepted as
a site of real music. A formal performance (strictly
scored or completely improvised) is the tip of the ice-
berg of a rich inhabitable musical environment. Such
a context can be understood to establish a smokescreen
between the audience and the performance, and gener-
ally imposes strict limitations on the performer’s activ-
ity (even in the improvised context). Rather it comes
from the exploratory day-to-day interactions between hu-
man and musical system, which has to be interactive
and exploratory for there to be any meaning to the sys-
tem’s action. Thus alife music systems might mani-
fest themselves as small components of existing soft-
ware systems such as VST plug-ins, plug-ins to music
playback software such as Apple’s iTunes, and as as ob-
jects in computer music environments such as Max/MSP
(www.cycling74.com), PD (www.puredata.info) and Su-
perCollider (www.audiosynth.com).

Consider the domain of this exploratory day-to-day
musical interaction. How does it differ from context to
context? In the vignette the context is that of a child out-
side of his normal educational routine engaging with some
kind of contemporary urban music. He is not a profes-
sional. He does not necessarily know what he wants to get
out of this interaction, like most children he has a limited
sense of what is possible musically, and having grown up
with this kind of alife software commonplace he unthink-
ingly accepts its legitimacy.

In this context there is an important opportunity for the
alife system to vary. Each time a download is made from
the list it may be the mutated or crossbred offspring of

Computational Creativity 2007

69

earlier successful agents. This is different from the vari-
ation of a system that is designed to be creative; the user
is not the designer of the system, and he does not require
that the system is creative and therefore variable, even if
he would ultimately like the system to pass through long-
term changes. The system need not change at all once he
has downloaded it. What is important is that when the
user does want something to be different they go about
finding it in an alife way. This may mean asking for a new
variation, as in an IGA, but it could also involve manually
tweaking the system as long as the information from this
interaction could be interpreted as a significant interaction
with its environment, and used to inform later evolution.

There are numerous significant implementation ques-
tions surrounding the kind of system that would fulfil this
goal. Our concern is only with the context in which this
could happen. Could an online multiuser evolving sys-
tem fit easily with the goals and desires of the people us-
ing the system? It would be problematic if users stuck
with behaviours they liked and never look for new ones,
or if they became frustrated with constantly searching for
behaviours which acted in ways they did not understand
rather than designing behaviours from known methods.
They would soon go back to tried and tested music mak-
ing, and the system would freeze to a halt. Likewise, as
in any evolutionary computing approach, the stagnation of
the system itself in local optima is a constant threat to the
development of genuinely interesting behaviours, such as
the qualities of good alife music systems discussed at the
beginning of section 2. Overcoming these obstacles would
be an important development in strong alife music, and the
design of such systems would ideally be gentle on their
demands from end users, or somehow seductive. How-
ever, it is interesting to consider the many forms of artistic
practice (possibly only in recent history) that depend more
on our editorship of existing systems than on a thoroughly
creative act. DJing and remixing activities, extending to
musical genres such as bootleg and mashup, epitomise
this approach to creativity. This is clearly a new cultural
paradigm, but it may also be a more explicit expression
of what creativity has always been about (c.f., Koestler,
1967; Boden, 1990; Csikszentmihalyi, 1990, 1999). In-
deed, various views on the creative process focus on the
process of generate and test. Thus an optimistic view of
strong alife music is that it is actually perfectly suited to
our collective creative activities, and blurs the perceived
boundaries between the individual as creative system, the
society as creative system and software as creative system.

6 Conclusion
Many of the professional music producers of today more
often than not learnt their skills outside of the classroom
and in the bedroom studio, a whole music practice emer-
gent on the technology that was designed around other ex-
isting music practices of that time. In this paper we have
asked how the strange marriage of artificial life and mu-
sic could come to take on a meaning and significance that
truly bears on the principles of alife. We have alluded
to the emergence of a new social context that is entire
fantasy but with the simple goal of thinking through the

possible ways in which a technological aim and a social
practice may come together. It would be wrong to assume
that by highlighting this context as a possibility, no matter
how theoretically correct it may be, it would be simple to
evoke it through some kind of social engineering. In the
above discussion we rely on the notion that creative indi-
viduals find new uses for existing technology, and there
is no reason the believe that the uses they find for alife
music systems would pay any homage to the principles of
alife. All the same, it is exciting to consider the results
of designing multiuser evolutionary systems for popular
use that are based on the principle of providing a rich
variable evolutionary environment and to study ways in
which these systems are taken up, in which case it is vi-
tal to acknowledge the role of social trends in the success
or failure of such systems, as well as their actual design.
This suggests an interesting new direction for alife-based
music informatics, which would need to incorporate the
analysis of collective human social behaviour in its remit.
It also suggests new approaches to the study of computa-
tional creativity, in which we sever questions of creativity
from intelligence – artistic creativity becomes analogous
to the creativity of nature – as well as from the individual
– individuals act creatively, but this is only one layer of a
greater collective creative process.

Acknowledgements
Oliver Bown’s research is supported by a bursary from
the Department of Computing, Goldsmiths College. We
would like to thank Alice Eldridge for valuable discus-
sions and the three anonymous reviewers for their com-
ments.

References
Beer, R. (1996). Toward the evolution of dynamical neu-

ral networks for minimally cognitive behavior. In From
animals to animats 4: Proceedings of the Fourth Inter-
national Conference on Simulation of Adaptive Behav-
ior, pages 421–429. MIT Press.

Berry, R. and Dahlstedt, P. (2003). Artificial life: Why
should musicians bother? Contemporary Music Re-
view, 22(3):57–67.

Blackwell, T. and Young, M. (2004). Self-organised mu-
sic. Organised Sound, 9(2):137–150.

Boden, M. (1990). The Creative Mind. George Weiden-
feld and Nicholson Ltd.

Brooks, R. A. (1990). Elephants don’t play chess.
Robotics and Autonomous Systems, 6:3–15.

Collins, N. (2006). Towards Autonomous Agents for Live
Computer Music: Realtime Machine Listening and In-
teractive Music Systems. PhD thesis, Centre for Science
and Music, Faculty of Music, University of Cambridge.

Csikszentmihalyi, M. (1990). The domain of creativity.
In Runco, M. and Albert, R. S., editors, Theories of
Creativity. Sage Publications.

Computational Creativity 2007

70

Csikszentmihalyi, M. (1999). Implications of a systems
perspective for the study of creativity. In Sternberg,
R. J., editor, The Handbook of Creativity. CUP.

Eno, B. (1996). A Year With Swollen Appendices. Faber
and Faber.

Koestler, A. (1967). The Ghost in the Machine. Hutchin-
son and Co.

Lewis, G. E. (2002). Improvised music after 1950: Afro-
logical and eurological perspectives. Black Music Re-
search Journal, 22:215–246.

Lovelock, J. (1979). Gaia. A New Look at Life on Earth.
OUP.

Miranda, E. (2001). Composing Music with Computers.
Focal Press.

Owings, D. H. and Morton, E. S. (1998). Animal Vocal
Communication: A New Approach. Cambridge Univer-
sity Press.

Romero, J., Machado, P., Santos, A., and Cardoso, A.
(2003). On the development of critics in evolution-
ary computation artists. In Applications of Evolu-
tionary Computing: EvoWorkshops 2003: EvoBIO,
EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoS-
TIM, Essex, UK, April 14-16, 2003. Proceedings, vol-
ume 2611/2003 of Lecture Notes in Computer Science,
pages 559–569.

Rowe, R. (1993). Interactive Music Systems. MIT Press.

Slocum, A., Downey, D., and Beer, R. (2000). Further
experiments in the evolution of minimally cognitive be-
havior: From perceiving affordances to selective atten-
tion. In Meyer, J., Berthoz, A., Floreano, D., Roitblat,
H., and Wilson, S., editors, From Animals to Animats 6:
Proceedings of the Sixth International Conference on
Simulation of Adaptive Behavior, pages 430–439. MIT
Press.

Computational Creativity 2007

71

Computational Creativity 2007

72

Evaluating Cognitive Models of Musical Composition

Marcus T. Pearce and Geraint A. Wiggins
Centre for Cognition, Computation and Culture

Goldsmiths, University of London
New Cross, London SE14 5SG, UK

{m.pearce,g.wiggins}@gold.ac.uk

Abstract

We present a method for the evaluation of creative sys-
tems. We deploy a learning-based perceptual model
of musical melodic listening in the generation of tonal
melodies and evaluate its output quantitatively and objec-
tively, using human judges. Then we show how the sys-
tem can be enhanced by the application of mathematical
methods over data supplied by the judges. The outcome
to some extent addresses the criticisms of the experts. We
suggest that this is a first step on the road to autonomously
learning, introspective, creative systems.

1 Introduction

We examine, at the computational level, the demands
of the melodic composition task, focusing on constraints
placed on the representational primitives and the expres-
sive power of the composition system. We use three
multiple-feature Markov models trained on a corpus of
chorale melodies to generate novel pitch structures for
seven existing chorale melodies. We propose null hy-
potheses that each model is consistently capable of gen-
erating chorale melodies that are rated as equally success-
ful examples of the style as the original chorale melodies
in our dataset. To examine the hypotheses, experienced
judges rated the generated melodies together with the
original chorale melodies, using a variant of the Consen-
sual Assessment Technique (Amabile, 1996) for inves-
tigating psychological components of human creativity.
The results warrant rejection of the null hypothesis for all
three of the systems. Even so, further analysis identifies
some objective features of the chorale melodies that ex-
hibit significant relationships with the ratings of stylistic
success, suggesting how the computational models fail to
meet intrinsic stylistic constraints of the genre. Adding
new features to address these concerns significantly im-
proves our systems’ prediction performance.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

We present our experiment and the evaluation method,
which, we suggest, forms a basis for systems capable of
introspection based on feedback on their output.

2 Background
2.1 Music Generation from Statistical Models

Conklin (2003) examines four methods of generating
high-probability music according to a statistical model.
The simplest is sequential random sampling: an event is
sampled from the estimated event distribution at each se-
quential position up to a given length. Events are gener-
ated in a random walk, so there is a danger of straying into
local minima in the space of possible compositions. Even
so, most statistical generation of music uses this method.

The Hidden Markov Model (HMM) addresses these
problems; it generates observed events from hidden states
(Rabiner, 1989). An HMM is trained by adjusting the
probabilities conditioning the initial hidden state, the tran-
sitions between hidden states and the emission of ob-
served events from hidden states, so as to maximise the
probability of a training set of observed sequences. A
trained HMM can be used to estimate the probability of an
observed sequence of events and to find the most probable
sequence of hidden states given an observed sequence of
events. This can be achieved efficiently for a first-order
HMM using the Viterbi algorithm; a similar algorithm
exists for first-order (visible) Markov models. However,
Viterbi’s time complexity is exponential in the context
length of the underlying Markov model (Conklin, 2003).

Tractable methods for sampling from complex sta-
tistical models (such as those presented here) which ad-
dress the limitations of random sampling do exist, how-
ever (Conklin, 2003). The Metropolis-Hastings algo-
rithm is a Markov Chain Monte Carlo (MCMC) sampling
method (MacKay, 1998). The following description ap-
plies it within our generation framework. Given a trained
multiple-feature model m for some basic feature τb, in or-
der to sample from the target distribution pm(s ∈ [τb]∗),
the algorithm constructs a Markov chain in the space of
possible feature sequences [τb]∗ as follows:

1. number of iterations N ← a large value; iteration
number k ← 0; initial state s0 ← some feature se-
quence tj1 ∈ [τb]∗ of length j;

2. select event index 1 ≤ i ≤ j at random or based on

Computational Creativity 2007

73

some ordering of the indices;

3. let s′k be the sequence obtained by replacing event ti
at index i of sk with a new event t′i sampled from a
distribution q which may depend on the current state
sk – in the present context, an obvious choice for q
would be {pm(t|ti−1

1)}t∈[τb];

4. accept the proposed sequence with probability

min
[
1,

pm(s′k) · q(ti)
pm(sk) · q(t′i)

]
;

5. if accepted, sk+1 ← s′k, else sk+1 ← sk;

6. if k < N , k++ and iterate from 2, else return sk.

If N is large enough, the resulting event sequence
sN−1 is guaranteed to be an unbiased sample from the tar-
get distribution pm([τb]∗). However, there is no method of
assessing the convergence of MCMCs nor of estimating
the number of iterations required to obtain an unbiased
sample (MacKay, 1998). Because these sampling algo-
rithms explore the state space using a random walk, they
can still be trapped in local minima.

Event-wise substitution is unlikely to provide a sat-
isfactory model of phrase- or motif-level structure. Our
model has a short-term component, to model intra-opus
structure, but generation still relies on single-event sub-
stitutions. Pattern-discovery algorithms may be used to
reveal phrase level structure, which may subsequently be
preserved during stochastic sampling (Conklin, 2003).

2.2 Evaluating Computer Models of Composition

Analysis by synthesis evaluates computational models of
composition by generating pieces and evaluating them
with respect to the objectives of the implemented model.
The method has a long history; Ames and Domino (1992)
argue that a primary advantage of computational analysis
of musical style is the ability to evaluate new pieces gen-
erated from an implemented theory. However, evaluation
of the generated music raises methodological issues which
have typically compromised the potential benefits thus af-
forded (Pearce et al., 2002). Often, compositions are eval-
uated with a single subjective comment, e.g.,: “[the com-
positions] are realistic enough that an unknowing listener
cannot discern their artificial origin” (Ames and Domino,
1992, p. 186). This lack of precision makes it hard to
compare theories intersubjectively.

Other research has used expert stylistic analyses to
evaluate computer compositions. This is possible when
a computational model is developed to account for some
reasonably well-defined stylistic competence or accord-
ing to critical criteria derived from music theory or music
psychology. For example, Ponsford et al. (1999) gave an
informal stylistic appraisal of the harmonic progressions
generated by their n-gram models.

However, even when stylistic analyses are under-
taken by groups of experts, the results obtained are typ-
ically still qualitative. For fully intersubjective analy-
sis by synthesis, the evaluation of the generated com-
positions must be empirical. One could use an adapta-
tion of the Turing test, where subjects are presented with

pairs of compositions (one computer-generated, the other
human-composed) and asked which they believe to be the
computer-generated one (Marsden, 2000). Musical Tur-
ing tests yield empirical, quantitative results which may
be appraised intersubjectively. They have demonstrated
the inability of subjects to distinguish reliably between
computer- and human-composed music. But the method
can be biased by preconceptions about computer music,
allows ill-informed judgements, and fails to examine the
criteria being used to judge the compositions.

2.3 Evaluating Human Composition

Amabile (1996) proposes a conceptual definition of cre-
ativity in terms of processes resulting in novel, appropri-
ate solutions to heuristic, open-ended or ill-defined tasks.
However, while agreeing that creativity can only be as-
sessed through subjective assessments of products, she
criticises the use of a priori theoretical definitions of cre-
ativity in rating schemes and failure to distinguish creativ-
ity from other constructs. While a conceptual definition
is important for guiding empirical research, a clear opera-
tional definition is necessary for the development of use-
ful empirical methods of assessment. Accordingly, she
presents a consensual definition of creativity in which a
product is deemed creative to the extent that observers
who are familiar with the relevant domain independently
agree that it is creative. To the extent that this construct
is internally consistent (independent judges agree in their
ratings of creativity), one can empirically examine the ob-
jective or subjective features of creative products which
contribute to their perceived creativity.

Amabile (1996) used this operational definition to de-
velop the consensual assessment technique (CAT), an em-
pirical method for evaluating creativity. Its requirements
are that the task be open-ended enough to permit consid-
erable flexibility and novelty in the response, which must
be an observable product which can be rated by judges.
Regarding the procedure, the judges must:

1. be experienced in the relevant domain;

2. make independent assessments;

3. assess other aspects of the products such as technical
accomplishment, aesthetic appeal or originality;

4. make relative judgements of each product in relation
to the rest of the stimuli;

5. be presented with stimuli and provide ratings in or-
ders randomised differently for each judge.

Most importantly, in analysing the collected data, the
inter-judge reliability of the subjective rating scales must
be determined. If—and only if—reliability is high, we
may correlate creativity ratings with other objective or
subjective features of creative products.

Numerous studies of verbal, artistic and problem solv-
ing creativity have demonstrated the ability of the CAT
to obtain reliable subjective assessments of creativity in a
range of domains (Amabile, 1996, ch. 3, gives a review).

The CAT overcomes the limitations of the Turing test
in evaluating computational models of musical composi-
tion. First, it requires the use of judges expert in the task

Computational Creativity 2007

74

System Features H
A Pitch 2.337
B Int1stInPiece, ScaleDegree

⊗DurRatio,
Thread1stInPhrase

2.163

C Interval⊗Duration, ScaleDegree
⊗Int1stInPiece,

Pitch⊗Duration,
ScaleDegree⊗1stInBar,
ThreadTactus,
ScaleDegree⊗Duration,
Interval⊗DurRatio,
Int1stInPiece,
Thread1stInPhrase

1.953

Table 1: The component features of Systems A, B and
C and their average information content computed by 10-
fold cross-validation over the dataset.

domain. Second, since it has been developed for research
on human creativity, no mention is made of the computa-
tional origins of the stimuli; this avoids bias due to pre-
conceptions. Third, and most importantly, the methodol-
ogy allows more detailed examination of the objective and
subjective dimensions of the creative products. Crucially,
the objective attributes of the products may include fea-
tures of the generative models (corresponding with cogni-
tive or stylistic hypotheses) which produced them. Thus,
we can empirically compare different musicological the-
ories of a given style or hypotheses about the cognitive
processes involved in composing in that style.

3 The Experiment
3.1 Introduction

Following Johnson-Laird (1991), we analyse the compu-
tational constraints of the melody composition task in two
ways: first, examining whether our learned finite context
grammars can compose stylistically-successful melodies
or whether more expressive grammars are needed; and
second, determining which representational structures are
needed for the composition of successful melodies.

Our experiment is designed to test the hypothesis that
our statistical models are capable of generating melodies
which are deemed stylistically successful in the context of
a specified tradition. Three multiple-feature Markov mod-
els (Pearce, 2005) trained on a dataset of chorale melodies
were used to generate melodies which were then empiri-
cally evaluated: System A is a single-feature system; Sys-
tem B is a multiple-feature system developed through for-
ward, stepwise feature selection to provide the closest fit
to the human expectancy judgements obtained by Man-
zara et al. (1992); and System C is a multiple-feature sys-
tem developed through forward, stepwise feature selection
to yield the best prediction performance over the chorale
dataset. The Systems were parameterised optimally and
differ only in the features they use (Table 1).

Our work differs in several ways from extant statisti-
cal modelling for music generation, in particular, in that
no symbolic constraints were imposed on the generation
process—it was based entirely on the learned models.
This focuses the analysis more sharply on the inherent ca-
pacities of statistical finite context grammars, since our
goal was to examine the synthetic capabilities of purely

statistical, data-driven models of melodic structure.
Our strategy improves on previous work in several

ways. The variable order selection policy of PPM*
(Cleary and Teahan, 1997) is used to address concerns
that low, fixed order models tend to generate features un-
characteristic of the target style (Ponsford et al., 1999).
Other model parameters are optimised to improve predic-
tion performance over a range of different melodic styles.
Systems B and C operate over rich representational spaces
supplied by the multiple-feature framework; their fea-
tures were selected on the basis of objective and empir-
ical criteria (cf. Conklin and Witten, 1995). Our Systems
use a novel model combination strategy, which improves
prediction performance over the chorale dataset (Pearce,
2005). While most previous approaches used sequential
random sampling to generate music from statistical mod-
els, in the present research melodies were generated using
Metropolis sampling. We expect that this method will be
capable of generating melodies which are more represen-
tative of the inherent capacities of the Systems. We do
not propose Metropolis sampling as a cognitive model of
melodic composition, but use it merely as a means of gen-
erating melodies which reflect the internal state of knowl-
edge and capacities of the trained models.

Finally, to evaluate the systems as computational mod-
els of melodic composition, we developed a method based
on the CAT. The method, described fully by Pearce
(2005), obtains ratings by expert judges of the stylistic
success of computer generated compositions and existing
compositions in the target genre. The empirical nature of
this method makes it preferable to the exclusively quali-
tative analyses typically adopted and we expect it to yield
more revealing results than the Turing test methodology.

3.2 Hypotheses

We use three different Systems to examine which repre-
sentational structures are needed for competent melody
generation. Our null hypotheses are that each System can
generate melodies rated as equally stylistically successful
in the target style as existing, human-composed melodies.
We expect the null hypothesis for the simplistic System A
to be refuted.

For System B, Baroni’s (1999) proposal that compo-
sition and listening involve equivalent grammatical struc-
tures is relevant. If the representational structures under-
lying perception and composition of music are similar,
we would expect grammars which model perceptual pro-
cesses well to generate satisfactory compositions. Since
System B represents a satisfactory model of the percep-
tion of pitch structure in the chorale genre, we may expect
to retain the null hypothesis for this system.

Pearce and Wiggins (2006) demonstrate a relation-
ship between prediction performance and fit to hu-
man expectancy data (Manzara et al., 1992), suggesting
that human perceptual systems base their predictions on
uncertainty-reducing representational features. In terms
of model selection for music generation, highly predictive
theories of a musical style, as measured by information
content, should generate original and acceptable works in
the style (Conklin and Witten, 1995). Systems A, B and C

Computational Creativity 2007

75

in turn exhibit decreasing uncertainty in predicting unseen
melodies from the dataset (Table 1). Therefore, we may
expect to retain the null hypothesis for System C.

3.3 Method

3.3.1 Judges

Our judges were 16 music researchers or students at City
University, London, Goldsmiths, University of London,
and the Royal College of Music. Five were male and
eleven female, and their age range was 20–46 years (mean
25.9, SD 6.5). They had been formally musically trained
for 2–40 years (mean 13.8, SD 9.4). Seven judges re-
ported high familiarity with the chorale genre and nine
were moderately familiar. All judges received a nominal
payment, and worked for approximately an hour.

3.3.2 Apparatus and Stimulus Materials

Our dataset is a subset of the chorale melodies placed in
the soprano voice and harmonised in four parts by J. S.
Bach. These melodies are characterised by stepwise pat-
terns of conjunct intervallic motion and simple, uniform
rhythmic and metric structure. Phrase structure is explic-
itly notated. Most phrases begin on the tonic, mediant
or dominant and end on the tonic or dominant; the final
phrase almost always ends with a cadence to the tonic.

Our stimuli were as follows. Seven existing base
melodies were randomly selected from the set of chorales
in the midrange of the distribution of average informa-
tion content (cross-entropy) values computed by System
A. All 7 were in common time; 6 were in major keys and
1 was minor; they were 8–14 bars (mean 11.14) and 33–
57 events (mean 43.43) long. The base melodies were
removed from the training dataset.

7 novel melodies were generated by each System, via
5000 iterations of Metropolis sampling using the 7 base
chorales as initial states. Only pitch was sampled: time
and key signatures and rhythmic and phrase structure were
left unchanged. Figure 1 shows one base chorale melody
and the three melodies generated using it; Pearce (2005)
gives further examples.

Each melody was stored as a quantised MIDI file. A
pattern of velocity accents was added to emphasise the
metrical structure and a one-beat rest was inserted after
each fermata to disambiguate the phrase structure. The
stimuli were recorded to CD-quality audio files on a PC
using the piano tone of a Roland XP10 synthesiser con-
nected via MIDI to a Terratec EWS88 MT soundcard, at
a uniform 90 beats per minute. They were presented over
Technics RP-F290 stereo headphones fed from a laptop
PC running a software media player. The judges recorded
their responses in writing in a response booklet.

3.3.3 Procedure

Our judges supplied their responses individually and re-
ceived instructions verbally and in writing. We told them
they would hear a series of chorale melodies in the style
of Lutheran hymns and asked them to listen to each entire
melody before answering two questions about it by plac-
ing circles on discrete scales in the response booklet. The

J. S. Bach: Jesu, meiner Seelen Wonne (BWV 359)
chor106-original

System A: Jesu, meiner Seelen Wonne
chor106-cpitch-metro5000

System B: Jesu, meiner Seelen Wonne
chor106-perceptual-metro5000

System C: Jesu, meiner Seelen Wonne
chor106-compositional-metro5000

Figure 1: An example of one base chorale melody and the
three melodies generated using it.

first question1 was, “How successful is the composition
as a chorale melody?” Judges were advised that their an-
swers should reflect such factors as conformity to impor-
tant stylistic features, tonal organisation, melodic shape
and interval structure; and melodic form. Answers to this
question were given on a seven-point numerical scale, 1–
7, with anchors marked low (1), medium (4) and high (7).
To promote an analytic approach to the task, judges were
asked to briefly justify their responses to the first ques-
tion. The second question was, “Do you recognise the
melody?” Judges were advised to answer “yes” only if
they could specifically identify the composition as one
they were familiar with.

We explained to the judges that after both questions
had been answered for a melody, they could listen to the
next one by pressing a single key on the PC. We asked
them to bear in mind that their task was to rate the com-
position of each melody rather than the performance and
urged them to use the full range of the scales, reserving 1
and 7 for extreme cases. There were no constraints on the
time taken to answer the questions.

The experiment began with a practice session during
which judges heard two melodies from the same genre
(but not one of those in the test set). These practice trials
were intended to set a judgemental standard for the sub-
sequent test session. This departs from the CAT, which
encourages judges to rate each stimulus in relation to the
others by experiencing all stimuli before making their rat-
ings. However, here, we intended the judges to use their
expertise to rate the stimuli against an absolute standard:
the body of existing chorale melodies. Judges responded

1This is a variant on the original CAT, whose primary judge-
ment was about creativity. We justify this on the grounds that
stylistic success is a directly comparable kind of property.

Computational Creativity 2007

76

as described above for both of the items in the practice
block. The experimenter remained in the room for the du-
ration of the practice session after which the judges were
given an opportunity to ask any further questions; he then
left the room before the start of the test session.

In the test session, the 28 melodies were presented to
the judges, who responded to the questions. The melodies
were presented in random order subject to the constraints
that no melody generated by the same system nor based on
the same chorale were presented sequentially. A reverse
counterbalanced design was used, with eight of the judges
listening to the melodies in one such order and the other
eight listening to them in the reverse order.

After the test session, the judges filled out a question-
naire detailing their age, sex, number of years of music
training (instrument and theory) and familiarity with the
chorales harmonised by J. S. Bach (high/medium/low).

3.4 Results

3.4.1 Inter-judge Consistency

We report analyses of the 28 melodies from our test ses-
sion: we discarded the data from the practice block. First,
we examine the consistency of the judges’ ratings.

All but two of the 120 pairwise correlations between
judges were significant at p < 0.05 with a mean coeffi-
cient of r(26) = 0.65 (p < 0.01). Since there was no
apparent reason to reject the judges involved in the two
non-significant correlations, we did not do so. This high
consistency warrants averaging the ratings for each stim-
ulus across individual judges in subsequent analyses.

3.4.2 Presentation Order and Prior Familiarity

Two factors which might influence the judges’ ratings are
the order of presentation of the stimuli and prior familiar-
ity. The correlation between the mean success ratings for
judges in the two groups was r(26) = 0.91, p < 0.01 in-
dicating a high degree of consistency across the two orders
of presentation, and warranting the averaging of responses
across the two groups; and, although the mean success rat-
ings tended to be slightly higher when judges recognised
the stimulus, a paired t test revealed no significant differ-
ence: t(6) = 2.07, p = 0.08.

3.4.3 Influence of Generative System and Base Chorale

Now we examine the primary question: the influence of
generative system on the ratings of stylistic success. The
mean success ratings for each stimulus are shown in Ta-
ble 2. The mean ratings suggest that the original chorale
melodies were rated higher than the computer-generated
melodies while the ratings for the latter show an influ-
ence of base chorale but not of generative system. Melody
C249 is an exception, attracting high average ratings of
success. Our preferred analysis would have been a multi-
variate ANOVA using within-subjects factors for genera-
tive system with 4 levels (Original, System A, B, C) and
base chorale with 7 levels (249, 238, 365, 264, 44, 153
and 147) with the null hypotheses of no main or interac-
tion effects of generative system or base chorale. How-
ever, Levene’s test revealed significant non-homogeneity
of variance with respect to the factor for generative system

Base System A System B System C Original Mean
249 2.56 2.44 5.00 6.44 4.11
238 3.31 2.94 3.19 5.31 3.69
365 2.69 1.69 2.50 6.25 3.28
264 1.75 2.00 2.38 6.00 3.03
44 4.25 4.38 4.00 6.12 4.69
141 3.38 2.12 3.19 5.50 3.55
147 2.38 1.88 1.94 6.50 3.17

Mean 2.90 2.49 3.17 6.02 3.65

Table 2: The mean success ratings for each stimulus and
means aggregated by generative system and base chorale.

Statistic System A System B System C Original
Median 2.86 2.57 3.07 5.93
Q1 2.68 2.25 2.68 5.86
Q3 3.29 2.75 3.61 6.29
IQR 0.61 0.50 0.93 0.43

Table 3: The median, quartiles and inter-quartile range of
the mean success ratings for each generative system.

F (3) = 6.58, p < 0.01, so ANOVA was not applicable.
Therefore, we used Friedman’s rank sum tests, as a non-
parametric alternative; this does not allow examination of
interactions between the two factors.

We examined the influence of generative system in
an unreplicated complete blocked design using the mean
success ratings aggregated for each subject and genera-
tive system across the individual base chorales. Summary
statistics for this data are shown in Table 3. The Fried-
man test revealed a significant within-subject effect of
generative system on the mean success ratings: χ2(3) =
33.4, p < 0.01. We compared the factor levels pairwise
using Wilcoxon rank sum tests with Holm’s Bonferroni
correction for multiple comparisons: the ratings for the
original chorale melodies differ significantly from the rat-
ings of melodies generated by all three computational sys-
tems (p < 0.01). Furthermore, the mean success ratings
for the melodies generated by System B were found to be
significantly different from those of the melodies gener-
ated by Systems A and C (p < 0.03). These results sug-
gest that none of the systems is capable of consistently
generating chorale melodies which are rated as equally
stylistically successful as those in the dataset and that Sys-
tem B performed especially poorly.

4 Learning from Qualitative Feedback
4.1 Objective Features of the Chorales

Next, we aim to explain how the Systems lack composi-
tionally, by examining which objective musical features
of the stimuli the judges used in making their ratings of
stylistic success. This could explain how the systems are
lacking compositionally. To achieve this, we analysed the
stimuli qualitatively and developed a set of corresponding
objective descriptors, which we then applied in a series of
multiple regression analyses using the rating scheme, av-
eraged across stimuli, as a dependent variable. We now
present the descriptive variables, their quantitative coding
and the analysis results.

The chorales generated by our systems are mostly

Computational Creativity 2007

77

not very stylistically characteristic of the dataset, espe-
cially in higher-level form. From the judges’ qualitative
comments, we identified stylistic constraints describing
the stimuli and distinguishing the original melodies. We
grouped them into five categories—pitch range; melodic
structure; tonal structure; phrase structure; and rhythmic
structure—each covered by a predictor variable.

Pitch Range The dataset melodies span a pitch range
of about an octave above and below C5, favouring the
centre of this range. The generated melodies are con-
strained to this range, but some tend towards extreme tes-
situra. We developed a predictor variable pitch centre to
capture this difference, reflecting the absolute distance, in
semitones, of the mean pitch of a melody from the mean
pitch of the dataset (von Hippel, 2000). Another issue
is the overall pitch range of the generated chorales. The
dataset melodies span an average range of 11.8 semitones.
By contrast, several of the generated melodies span pitch
ranges of 16 or 17 semitones, with a mean pitch range of
13.9 semitones; others have a rather narrow pitch range.
We captured these qualitative considerations in a quantita-
tive predictor variable pitch range, representing the abso-
lute distance, in semitones, of the pitch range of a melody
from the mean pitch range of the dataset.

Melodic Structure There are several ways in which the
generated melodies do not consistently reproduce salient
melodic features of the original chorales. The most ob-
vious is a failure to maintain a stepwise pattern of move-
ment. While some generated melodies are relatively co-
herent, others contain stylistically uncharacteristic leaps
of an octave or more. Of 9042 intervals in the dataset
melodies, only 57 exceed a perfect fifth and none exceeds
an octave. To capture these deviations, we created a quan-
titative predictor variable called interval size, representing
the number of intervals greater than a perfect octave in a
melody. The generated chorales also contain uncharac-
teristic discords such as tritones or sevenths. Only 8 of
the 9042 intervals in the dataset are tritones or sevenths
(or their enharmonic equivalents). To capture these devia-
tions, we created a quantitative predictor variable interval
dissonance, representing the number of dissonant inter-
vals greater than a perfect fourth in a melody.

Tonal Structure Since System A operates exclusively
over representations of pitch, it is not surprising that most
of its melodies fail to establish a key note and exhibit lit-
tle tonal structure. However, we might expect Systems B
and C to do better. While the comments of the judges sug-
gest otherwsie, they may have arrived at a tonal interpreta-
tion at odds with the intended key of the base chorale. To
independently estimate the perceived tonality of the test
melodies, Krumhansl’s (1990) key-finding algorithm, us-
ing the revised key profiles of Temperley (1999) was ap-
plied to each of the stimuli. The algorithm assigns the
correct keys to all seven original chorale melodies. While
the suggested keys of the melodies generated by System
A confirm that it does not consider tonal constraints, the
melodies generated by Systems B and C retain the key of
their base chorale in two and five cases respectively. Fur-
thermore, especially in the case of System C, deviations

from the base chorale key tend to be to related keys (ei-
ther in the circle of fifths or through relative and parallel
major/minor relationships). This suggests some success
on the part of the more sophisticated systems in retaining
the tonal characteristics of the base chorales.

Nonetheless, the generated melodies are often unac-
ceptably chromatic, which obscures the tonality. There-
fore, we developed a quantitative predictor called chro-
maticism, representing the number of chromatic tones in
the algorithm’s suggested key.

Phrase Structure The generated chorales typically fail
to reproduce the implied harmonic rhythm of the origi-
nals and its characteristically strong relationship to phrase
structure. In particular, while some of the generated
melodies close on the tonic, many fail to imply stylis-
tically satisfactory harmonic closure. To capture such
effects, we created a variable called harmonic closure,
which is 0 if a melody closes on the tonic of the key as-
signed by the algorithm and 1 otherwise. Secondly, the
generated melodies frequently fail to respect thematic rep-
etition and development of melodic material embedded in
the phrase structure of the chorales. However, these kinds
of repetition and development of melodic material are not
represented in the present model. Instead, as a simple indi-
cator of complexity in phrase structure, we created a vari-
able phrase length, which is 0 if all phrases are of equal
length and 1 otherwise.

Rhythmic Structure Although the chorale melodies in
the dataset tend to be rhythmically simple, the judges’
comments revealed that they were taking account of rhyth-
mic structure. Therefore, we adapted three further quanti-
tative predictors modelling rhythmic features from Eerola
and North’s (2000) expectancy-based model of melodic
complexity. Rhythmic density is the mean number of
events per tactus beat. Rhythmic variability is the degree
of change in note duration (i.e., the standard deviation of
the log of the event durations) in a melody. Syncopation
estimates the degree of syncopation by assigning notes a
strength in a metric hierarchy and averaging the strengths
of all the notes in a melody; pulses are coded such that
lower values are assigned to tones on metrically stronger
beats. All three quantities increase the difficulty of per-
ceiving or producing melodies (Eerola and North, 2000).

The mean success ratings for each stimulus were re-
gressed on the predictor variables in a multiple regres-
sion analysis. The following pairwise correlations be-
tween the predictors were significant at p < 0.05: interval
size, positively with interval dissonance (r = 0.6) and
chromaticism (r = 0.39); harmonic closure, positively
with chromaticism (r = 0.49); rhythmic variation, pos-
itively with syncopation (r = 0.61) and phrase length
(r = 0.73); and rhythmic density, positively with syn-
copation (r = 0.62) and negatively with phrase length
(r = −0.54). Because of this collinearity, in each anal-
ysis, redundant predictors were removed through back-
wards stepwise elimination using the Akaike Information
Criterion: AIC = n log(RSS/n) + 2p + c, for a regres-
sion model with p predictors and n observations, where c
is a constant and RSS is the residual sum of squares of the
model (Venables and Ripley, 2002). Since larger models

Computational Creativity 2007

78

Predictor β Std. Error t p
Pitch Range −0.29 0.08 −3.57 < 0.01
Pitch Centre −0.21 0.10 −2.01 < 0.1
Interval Dissonance −0.70 0.28 −2.54 < 0.05
Chromaticism −0.27 0.03 −8.09 < 0.01
Phrase Length −0.53 0.28 −1.91 < 0.1
Overall model: R = 0.92, R2

adj = 0.81,
F (5, 22) = 25.04, p < 0.01

Table 4: Multiple regression results for the mean success
ratings of each test melody.

Stage Feature Added H
1 Interval⊗Duration 2.214
2 ScaleDegree⊗Mode 2.006
3 ScaleDegree 1.961

⊗Int1stInPiece
4 Pitch⊗Duration 1.943
5 Thread1stInPhrase 1.933
6 ScaleDegree 1.925

⊗LastInPhrase
7 Interval⊗DurRatio 1.919
8 Interval⊗InScale 1.917
9 ScaleDegree⊗Duration 1.912

10 Int1stInPhrase 1.911

Table 5: Results of feature selection for reduced informa-
tion content over the dataset using an extended feature set.

provide better fits, this criterion balances model size, rep-
resented by p, with the fit of the model to the dependent
variable, RSS.

More positive values of the predictors indicate greater
deviation from the standards of the dataset (for pitch range
and centre) or increased melodic complexity (for the re-
maining predictors), so we expect each predictor to show a
negative relationship with the success ratings. The results
of the multiple regression analysis with the mean success
ratings as the dependent variable are shown in Table 4.
The overall model accounts for approximately 85% of the
variance in the mean success ratings. Apart from rhyth-
mic structure, at least one predictor from each category
made at least a marginally significant contribution to the
fit of the model. Coefficients of all the selected predictors
are negative as predicted. Overall, the model indicates
that the judged success of a stimulus decreases as its pitch
range and centre depart from the mean range and centre of
the dataset, with increasing numbers of dissonant intervals
and chromatic tones and if it has unequal phrase lengths.

4.2 Improving the Computational Systems

The constraints identified above mainly concern pitch
range, intervallic structure and tonal structure. It seems
likely that the confusion of relative minor and ma-
jor modes is due to the failure of any of the Sys-
tems to represent mode. To examine this hypothe-
sis, a linked feature ScaleDegree⊗Mode was added
to the feature space. Furthermore, we hypothesise
that the skewed distribution of pitch classes at phrase
beginnings and endings can be better modelled by
two linked features ScaleDegree⊗1stInPhrase
and ScaleDegree⊗LastInPhrase. On the hy-
pothesis that intervallic structure is constrained by
tonal structure, we included another linked feature
Interval⊗InScale.

System D: Jesu, meiner Seelen Wonne
chor106-compositional+-metro5000

Figure 2: Melody generated by System D, based on the
same chorale as Figure 1.

To examine whether the Systems can be improved
to respect such constraints, we added the four selected
features to the feature selection set used for System
C. We ran the same feature selection algorithm over
this extended feature space to select feature subsets
which improve prediction performance; the results are
shown in Table 5. In general, the resulting multiple-
feature System, D, shows a great deal of overlap with
System C. Just three of the nine features present in
System C were not selected for inclusion in System D:
ScaleDegree⊗1stInBar; ThreadTactus; and
Int1stInPiece. This is probably because three of
the four new features selected for inclusion in System
D, were strongly related: ScaleDegree⊗Mode;
ScaleDegree⊗LastInPhrase; and
Interval⊗InScale. The first two of these, in
particular, were selected early in the selection process;
the existing feature Int1stInPhrase was added in
the final stage. Ultimately, System D exhibits a lower
average information content (H = 1.91) than System
C (H = 1.95) in predicting unseen compositions in
the dataset. The significance of this difference was
confirmed by paired t tests over all 185 chorale melodies:
t(184) = 6.00, p < 0.01, and averaged for each 10-fold
partition of the dataset: t(9) = 12.00, p < 0.01.

4.3 A Melody Generated by System D

We now present preliminary results on System D’s capac-
ity to generate stylistically successful chorale melodies.
System D uses the features in Table 5; it exhibits signifi-
cantly lower entropy than System C in predicting unseen
melodies. We used it to generate several melodies, as de-
scribed above, with the same base melodies.

Figure 2 shows System D’s most successful melody,
based on Chorale 365. Its tonal and melodic structure are
much more coherent than System C’s melodies. Our mul-
tiple regression model, developed above to account for
the judges’ ratings of stylistic success, predicts that this
melody would receive a rating of 6.4 on a seven-point
scale of success as a chorale melody. While this result
is positive, other melodies were less successful; System D
must be analysed using our method to examine its ability
to consistently compose stylistically successful melodies.

5 Discussion and Conclusions
Our statistical finite context grammars did not meet
the computational demands of chorale melody composi-
tion, regardless of the representational primitives used.
Since we attempted to address the limitations of previous
context-modelling approaches to generating music, we

Computational Creativity 2007

79

might conclude that more powerful grammars are needed
for this task. However, other approaches are possible.
Further analysis of the capacities of finite context mod-
elling systems may prove fruitful: future research should
use the methodology developed here to analyse System D,
and identify and correct its weaknesses. The MCMC gen-
eration algorithm may be responsible for failure, rather
than the limitation of the models to finite context repre-
sentations of melodic structure: more structured genera-
tion strategies, such as pattern-based sampling techniques,
may be able to conserve phrase-level regularity and repe-
tition in ways that our Systems were not.

Our evaluation method also warrants discussion. The
adapted CAT yielded insightful results for ratings of
stylistic success even though the judges were encouraged
to rate the stimuli according to an absolute standard (cf.
Amabile, 1996). However, the results suggest possible
improvements: first, avoid any possibility of method arte-
facts by randomising the presentation order of both test
and practice items for each judge and also the order in
which rating scales are presented; second, the judges’
comments sometimes reflected aesthetic judgements, so
they should also give ratings of aesthetic appeal, to delin-
eate subjective dimensions of the product domain in the
assessment (Amabile, 1996); and third, though influence
of prior familiarity with the test items was ambiguous,
bias resulting from recognition should be avoided.

Our results suggest that the task of composing a stylis-
tically successful chorale melody presents significant
challenges as a first step in modelling cognitive processes
in composition. Nonetheless, our evaluation method
proved fruitful in examining the generated melodies in
the context of existing pieces in the style. It facilitated
empirical examination of specific hypotheses about the
models through detailed comparison of the generated and
original melodies on several dimensions. It also per-
mitted examination of objective features of the melodies
which influenced the ratings and subsequent identifica-
tion of weaknesses in the Systems and directions for im-
proving them. This practically demonstrates the utility of
analysis by synthesis for evaluating cognitive models of
composition—if it is combined with an empirical method-
ology for evaluation such as that developed here.

References
Amabile, T. M. (1996). Creativity in Context. Westview

Press, Boulder, Colorado.

Ames, C. and Domino, M. (1992). Cybernetic Composer:
An overview. In Balaban, M., Ebcioǧlu, K., and Laske,
O., editors, Understanding Music with AI: Perspectives
on Music Cognition, pages 186–205. MIT Press, Cam-
bridge, MA.

Baroni, M. (1999). Musical grammar and the cognitive
processes of composition. Musicæ Scientiæ, 3(1):3–19.

Cleary, J. G. and Teahan, W. J. (1997). Unbounded length
contexts for PPM. The Computer Journal, 40(2/3):67–
75.

Conklin, D. (2003). Music generation from statistical
models. In Proceedings of the AISB 2003 Symposium

on Artificial Intelligence and Creativity in the Arts and
Sciences, pages 30–35, Brighton, UK. SSAISB.

Conklin, D. and Witten, I. H. (1995). Multiple viewpoint
systems for music prediction. Journal of New Music
Research, 24(1):51–73.

Eerola, T. and North, A. C. (2000). Expectancy-based
model of melodic complexity. In Woods, C., Luck,
G., Brochard, R., Seddon, F., and Sloboda, J. A., edi-
tors, Proceedings of the Sixth International Conference
on Music Perception and Cognition, Keele, UK. Keele
University.

Johnson-Laird, P. N. (1991). Jazz improvisation: A the-
ory at the computational level. In Howell, P., West, R.,
and Cross, I., editors, Representing Musical Structure,
pages 291–325. Academic Press, London.

Krumhansl, C. L. (1990). Cognitive Foundations of Musi-
cal Pitch. Oxford University Press, Oxford.

MacKay, D. J. C. (1998). Introduction to Monte Carlo
methods. In Jordan, M. I., editor, Learning in Graphical
Models, NATO Science Series, pages 175–204. Kluwer
Academic Press, Dordrecht, The Netherlands.

Manzara, L. C., Witten, I. H., and James, M. (1992). On
the entropy of music: An experiment with Bach chorale
melodies. Leonardo, 2(1):81–88.

Marsden, A. (2000). Music, intelligence and artificiality.
In Miranda, E. R., editor, Readings in Music and Ar-
tificial Intelligence, pages 15–28. Harwood Academic
Publishers, Amsterdam.

Pearce, M. T. (2005). The Construction and Evaluation of
Statistical Models of Melodic Structure in Music Per-
ception and Composition. PhD thesis, Department of
Computing, City University, London, UK.

Pearce, M. T., Meredith, D., and Wiggins, G. A. (2002).
Motivations and methodologies for automation of the
compositional process. Musicae Scientiae, 6(2):119–
147.

Pearce, M. T. and Wiggins, G. A. (2006). Expectation in
melody: The influence of context and learning. Music
Perception, 23(5):377–406.

Ponsford, D., Wiggins, G. A., and Mellish, C. (1999). Sta-
tistical learning of harmonic movement. Journal of New
Music Research, 28(2):150–177.

Rabiner, L. R. (1989). A tutorial on Hidden Markov
Models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285.

Temperley, D. (1999). What’s key for key? The
Krumhansl-Schmuckler key-finding algorithm recon-
sidered. Music Perception, 17(1):65–100.

Venables, W. N. and Ripley, B. D. (2002). Modern Ap-
plied Statistics with S. Springer, New York.

von Hippel, P. T. (2000). Redefining pitch proximity: Tes-
situra and mobility as constraints on melodic intervals.
Music Perception, 17(3):315–127.

Computational Creativity 2007

80

SYSTEMATIC EVALUATION AND IMPROVEMENT
OF STATISTICAL MODELS OF HARMONY

Raymond P. Whorley Geraint A. Wiggins
Centre for Cognition, Computation and Culture

Goldsmiths, University of London
New Cross, London SE14 6NW, U.K.

{r.whorley,g.wiggins,m.pearce}@gold.ac.uk

Marcus T. Pearce

Abstract
We are investigating the utility of Markov models in re-
lation to the learning of the task of four-part harmoni-
sation, which is a creative musical activity. A program
is described which uses statistical machine learning tech-
niques to learn this task from a suitable corpus of homo-
phonic music. The task is decomposed into a series of
more manageable sub-tasks; these are each modelled by
Markov models, which can use contexts drawn from sym-
bols describing past, current and future chords. The re-
sults of a number of initial studies, for example compar-
ing different types of model and the effect of corpus size,
are given. There is also some discussion about harmonisa-
tions that have been generated by the program by random
sampling of the probability distributions in the models.
Following this, a procedure for the systematic evaluation
and “optimisation” of the sub-task models, involving the
application of an information-theoretic measure, is pre-
sented, along with some more results. An appraisal of the
procedure’s shortcomings is made, and ideas for its im-
provement are put forward. Finally, an indication of the
future direction of the work (which is currently in its early
stages) is given.

Keywords: Machine learning, harmonisation, Markov
models, evaluation.

1 Introduction
The current work contributes to the study of computa-
tional creativity in music by seeking to improve the com-
putational simulation of four-part harmonisation, which is
a creative human activity. We are investigating the utility
of Markov models in relation to the learning of this task,
in pursuit of which a program is being developed which
seeks to learn a style of four-part harmonisation from a
suitable corpus of homophonic music by means of statis-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

tical machine learning techniques. There are two primary
motivations for this work. The first is that the models so
produced should be of use in addressing stylistic and mu-
sicological issues, and the second is that the models could
form the basis of a cognitive model of harmonic percep-
tion (Pearce et al., 2002). It is intended that the program
will eventually handle music which is not completely ho-
mophonic, such as the set of chorale melodies harmonised
by J. S. Bach.

The approach adopted breaks the overall harmonisa-
tion task into a series of more manageable sub-tasks (Hild
et al., 1992; Allan, 2002) . The sub-tasks implemented so
far relate to the harmonic function of the chords; sub-tasks
that for example assign particular notes to the alto, tenor
and bass parts will follow in due course. An information-
theoretic measure is used to evaluate the various sub-task
models (Allan and Williams, 2005), and a systematic ap-
proach to evaluation is taken which guides the creation of
the models (Pearce, 2005). Having learned a style of har-
monisation in this way, the program is equipped to gener-
ate harmonisations to “unseen” melodies.

It should be noted that this is very much “work in
progress”; indeed, work at a very early stage. The results
obtained so far can only therefore be taken as indicative,
rather than definitive.

2 Corpus, Test Data and Input
The training corpus currently comprises fifteen major
key hymn tunes with harmonisations taken from Vaughan
Williams (1933) and Nicholson et al. (1950). In addition,
there are two sets of five major key test melodies with har-
monisations from the same sources (although only three
of these melodies are used for initial studies).

All of the training corpus melodies, along with a cer-
tain amount of annotation (Ponsford et al., 1999), are as-
signed to a single sequence (array) of symbols. Annota-
tion symbols are placed at the beginning and end of each
melody, and at phrase boundaries. All of the training cor-
pus bass parts are assigned to another symbol sequence
in a completely analogous way. Melody and bass notes
are normalised to seven scale degree symbols which are
not dependent upon key; for example a tonic note is rep-
resented by “1” and a dominant note by “5”. These scale
degrees can be chromatically altered by post-fixing with
“#” or “b” (sharp or flat). No account is currently taken of

Computational Creativity 2007

81

note duration or metrical importance.
Symbols representing the harmonic function of chords

in the training corpus (determined by the principal author)
are assigned, along with annotation symbols, to yet an-
other sequence. The chords are normalised to root posi-
tion triads and seventh chords; for example a tonic chord
is represented by “I” and a supertonic seventh chord by
“ii7”. Chords containing chromatically altered notes are
deemed to be triads or seventh chords in the nearest possi-
ble related key; for example if a chord containing the notes
D, F] and A appears when the key is C major, it is repre-
sented by “V/V” (dominant of the dominant). Since this
program does not keep track of modulations, the chord
could, alternatively, be described as “II”, a major triad
on the second degree of the original key. The latter ap-
proach requires less music-theoretic knowledge and gives
an equally good description; therefore it might be adopted
later. On the other hand, in their multiple viewpoint tech-
nique, Conklin and Cleary (1988) propose a viewpoint to
detect modulations; something of this sort could be incor-
porated into the program. Note that since the hymns are
homophonic (i.e., consisting of block chords only, with no
extra-chord movement such as passing notes), it is sim-
ple to associate all symbols comprising a particular chord
with the same array index for ease of retrieval.

Test melodies, bass parts and harmonic symbols are
assigned to sequences in the same way as for the training
corpus, except that they are individually assigned. Only
one test melody/harmony combination is used per pro-
gram run.

A second version of the harmonic symbol sequence
also exists, which contains chord inversion information in
the symbols. This is used for purposes of comparison.

3 The Models and Their Construction
3.1 Markov Models

Markov chains, or n-gram models, widely used in nat-
ural language processing (Manning and Schütze, 1999),
are sequences of n symbols (e.g., a sequence of musical
note names), where it is assumed that the probability of
the last symbol appearing is dependent upon the previ-
ous n − 1 symbols (the context). This is an approxima-
tion of the probability of the last symbol being dependent
upon its entire history; it can therefore be expected that
the longer the context, the more accurate the transition
probabilities. The size of the context is known as the or-
der of the Markov chain; therefore for example a 2-gram
(or bigram) is first-order (n.b., a Markov “chain” with no
context, a unigram, is zeroth-order).

Markov chains have been used in the prediction of
both harmony (Ponsford et al., 1999) and melody (Pearce,
2005). Allan (2002) tries using Markov models with ad-
ditional context to predict harmonic symbols, but decides
that it would be better to use hidden Markov models. The
contexts he uses, however, are restricted to past and cur-
rent melodic symbols, and past harmonic symbols. Bear-
ing in mind that a composer can look ahead while harmon-
ising a melody, we extend the scope of possible contexts
to include future symbols (i.e., those to the right of the
melody note currently being harmonised) wherever they

exist at the various stages of the harmonisation process;
for example, future melodic symbols can be used from
the beginning of the process.

3.2 Smoothing

It is often the case that contexts occurring while, for exam-
ple, generating a harmony to an “unseen” melody, cannot
be found in the model. In order to be able to make in-
formed predictions in these circumstances, a number of
models using different contexts are used in conjunction
with a smoothing technique. Conklin and Cleary (1988)
and Allan (2002) use a simple method, which has worked
well with text, known as back-off smoothing (Katz, 1987).
For Markov chains, a number of models of different order
are created. When searching for a particular context, the
highest order model is checked first. If the context is not
found, the second-highest order model is checked, and so
on, until the (progressively smaller) context is found. For
the “mixed” contexts that we are using, however, back-off
is not limited to successive contexts of decreasing size;
different contexts of the same overall size can be involved
in the back-off sequence.

It should be noted that an escape method is normally
associated with back-off smoothing, whereby some of the
probability mass is assigned to unseen Markov chains, the
probabilities of which are estimated during back-off. No
such escape method has so far been implemented here; if a
context is not found in a particular model, then the model
is discarded. The next model to be tried is assumed to
contain all of the probability mass.

There are other more complicated smoothing methods
that are also known to work well, but one of the purposes
of this paper is to investigate how an optimum, or close to
optimum, back-off sequence can be determined, and how
well it performs.

3.3 Decomposition of the Harmonisation Task

Allan (2002) follows Hild et al. (1992) in breaking up the
harmonisation task into three sub-tasks, in the following
order: “harmonic skeleton”, “chord skeleton” and “or-
namentation”. In the “harmonic skeleton” sub-task, har-
monic symbols are assigned to each beat; the actual notes
of each chord are filled out in the “chord skeleton” sub-
task; and additional notes such as passing notes are sup-
plied during “ornamentation”. Wiggins (1998) suggests
that the problem should be broken up even further, by for
example choosing cadences first.

Here, we break up the task of assigning harmonic sym-
bols to melody notes as much as possible. The training
corpus has been augmented with symbols representing
root position triads and seventh chords (see Section 2).
The program assigns these root position harmonic sym-
bols on a first pass, and then bass note scale degree sym-
bols during a second pass, thereby effectively assigning
chord and inversion information. This is preferred to the
use of harmonic symbols incorporating inversion informa-
tion, in keeping with the dictum of using as little music-
theoretic knowledge as possible in the training of such
models. Knowledge about inversions is effectively in-
duced from the training corpus as the models learn the

Computational Creativity 2007

82

sequential structure of the given symbolic representations.
Having said that, the corpus has also been augmented with
harmonic symbols which incorporate chord inversion in-
formation (see Section 2), for purposes of comparison.
It should be noted that in this case the appropriate bass
note scale degrees still need to be induced from the cor-
pus, since no logic has been encoded to interpret the har-
monic symbols; however, they can be determined with a
probability of 1.0 during the second pass for all harmonic
symbols that have been “seen” in the corpus.

Each of the two passes is broken up into three sub-
tasks, each requiring its own model. The first deals with
cadence chords, which have been taken to be the last two
chords in each phrase; the second is concerned with all
chords except the final three in each phrase; and the third
specialises in the antepenultimate chord of each phrase,
with the objective of knitting together the bulk of the har-
mony in each phrase with its cadence.

3.4 Model Construction

Cadences are important structural components of music,
and as such deserve particular attention. The idea here is
to create models of symbols used at cadences, with the
intention not only of generating acceptable cadences in
isolation, but also generating appropriate sequences of ca-
dences (e.g., avoiding too many cadences of the same type
following each other). The sub-task which predicts root
position harmonic symbols for melody notes in caden-
tial positions will be used to exemplify the construction
of models.

The first step is to create a sequence from pairs of
melodic scale degree symbols at the end of each phrase,
along with all of the annotation symbols. Harmonic sym-
bols are treated in a completely analogous way; thus se-
quences containing only symbols at cadential positions
(plus annotations) have been formed.

Markov models are then constructed using maxi-
mum likelihood estimation (Manning and Schütze, 1999),
recording the probability of a particular harmonic sym-
bol appearing given a particular context. The context is
taken from the cadential symbol sequences created above.
A series of models is created, each successive one hav-
ing either a different context of the same size or a smaller
context compared with the one before, going all the way
down to no context at all (zeroth-order overall).

Models for the other five sub-tasks are constructed in
a similar way. The main difference is that for the four
models not directly concerned with cadences, all of the
input symbols are used (even for the pre-cadence model,
in spite of being used for only one chord per phrase).

To begin with, the back-off sequences were fairly ar-
bitrary, consisting mainly of a succession of ever-smaller
contexts. Some initial studies were performed using these
back-off strategies, before using an information-theoretic
measure to guide the construction of back-off sequences
that are likely to be much closer to optimal.

4 Evaluation Study
4.1 Evaluation Method

Some initial studies were performed using arbitrary back-
off strategies. The same information-theoretic measure
used later to improve these strategies, cross-entropy, was
used here both to evaluate models, using test data, and to
compare generated harmonies. If we define Pm(Si|Ci,m)
as the probability of the ith musical symbol given its con-
text for a particular model m, and assume that there are a
total of n sequential symbols, then cross-entropy is given
by −(1/n)

∑n
i=1 log2 Pm(Si|Ci,m). It is a useful mea-

sure, because it gives a “per symbol” value; it can there-
fore be used to compare sequences of any length. All else
being equal, the model which assigns the lowest cross-
entropy to a test sequence is the best descriptor of the data
(Allan, 2002). This is equivalent to saying that the model
which assigns the highest geometric mean of the condi-
tional probabilities in a test sequence is the best descriptor
of the data.

4.2 Description of Studies

The studies compared two broadly different model types;
one using root position harmonic symbols, and the other
employing harmonic symbols incorporating inversion in-
formation. (Note that in each case, two passes of a melody
are required; one to predict harmonic symbols and the
other to predict bass note scale degree symbols. See Sec-
tion 3.3). Within each of these models, the effect of corpus
size on both test data and generated harmony was inves-
tigated. Three hymns were used as test data: St. Anne,
Winchester Old and Winchester New. The melodies of
these same three hymns were also used in the random gen-
eration of harmony (i.e., these melodies were automati-
cally harmonised by the program, sampling from the sta-
tistical models created from the training corpus). Each
melody was harmonised ten times, and an overall cross-
entropy for the three melodies was calculated for each
pass (i.e., for allocation of harmonic symbols and bass
note scale degree symbols). The results are summarised
in Table 1.

4.3 Results

In order to achieve a degree of brevity in the following
discussion, the model using root position harmonic sym-
bols will be referred to as the root position model, and the
one using harmonic symbols incorporating inversion in-
formation will be referred to as the inversions model. It
can be seen from Table 1 that the root position model bet-
ter describes the test data (i.e., it has lower overall cross-
entropies), in spite of the inversions model having a cross-
entropy of zero for the second pass. It should be borne in
mind, however, that the arbitrary back-off strategies might
have favoured one model over the other; therefore a new
comparison should be made after optimising (as far as is
practical) the back-off sequences for each model. A start
will be made on this in the next section.

It is to be expected that models benefit from larger
training corpora, since more previously “unseen” contexts

Computational Creativity 2007

83

Table 1: Cross-entropy comparisons across model type, corpus size and test data/generated harmony

Model Corpus Test data Generated harmony
type size Pass 1 Pass 2 Passes 1 & 2 Pass 1 Pass 2 Passes 1 & 2

Inversions 5 1.448 0.000 0.724 0.508 0.000 0.254
10 1.132 0.000 0.566 0.288 0.000 0.144
15 1.096 0.000 0.548 0.296 0.000 0.148

Root 5 0.894 0.475 0.685 0.378 0.130 0.254
position 10 0.787 0.276 0.531 0.220 0.119 0.169

15 0.817 0.240 0.529 0.240 0.078 0.159

are likely to come to light with each addition to the cor-
pus. The figures in the table bear this out; but it should
be noted that although in general there is an improvement
between corpus sizes of ten and fifteen hymns, it is very
small compared with the marked improvement between
five and ten hymns. One possible reason for this is that
most of the “knowledge” concerning the basic harmoni-
sation of homophonic hymns can be garnered from a rel-
atively small corpus. Another possibility is that although
there might be additional information in larger corpora,
the system is, for one reason or another, unable to model
it. A third possibility is that the additional five hymns in-
troduce new structure that is mostly not found in the test
data, resulting in only a very small improvement. The lat-
ter possibility can easily be tested by further increasing
the corpus size, using a larger or different set of test data,
or all of the above. One way of testing the other two pos-
sibilities is to repeat the studies after completion of the
improved back-off strategies.

There is a large disparity between the cross-entropy
figures for test data and generated harmony; the figures
for generated harmony are much lower. We shall look at
this issue in more detail in Section 5.

4.4 Discussion of Generated Harmony

Having harmonised a melody, the program outputs triples
of melody note scale degree, harmonic symbol and bass
note scale degree. In order to listen to realisations of these
basic outputs, MIDI files are created “by hand”. Wherever
a chord chosen by the program is in agreement with the
hymnal harmony, the same arrangement of notes within
the chord as appears in the hymnal is used in the MIDI
file, provided that the usual voice-leading rules can be sat-
isfied.

The harmonies are often quite good, especially the
ones with lower cross-entropies. As an indication of this
(using the root position model) the harmonies with the
lowest cross-entropy for Winchester Old (five- and ten-
hymn corpora) and Winchester New (fifteen-hymn cor-
pus: see Figure 1) contain between 54 and 57 percent of
chords that are exactly the same as in the hymnal. Other
chords are good substitutions (e.g., the antepenultimate
chord in Figure 1, a root position subdominant, is a per-
fectly good alternative to the first inversion supertonic sev-
enth in the hymnal), while yet others sound distinctly out
of place (e.g., the second inversion chord at the end of the
first full bar of Figure 1). In contrast, the higher cross-
entropy harmonies (see Figure 2) sound further removed

from the style of the corpus, often containing chord pro-
gressions that are displeasing to the ear (e.g., the first two
chords of the second full bar of Figure 2 inescapably con-
tain parallel octaves, and the progression from the last
chord of the third full bar of Figure 2 to the following
chord sounds far from smooth).

4.5 Ten-fold Cross-validation

In addition to the above studies, a ten-fold cross-validation
was performed for both the root position and inversions
models. Each of the hymns in turn was removed from
the ten-hymn corpus and used as test data for a model
trained using the remaining nine hymns. The results are
summarised in Table 2. The most obvious difference be-
tween the two models is the number of harmonic symbols
encountered in the test data that had not been observed
in the training corpus; there are far fewer such symbols
associated with the root position model. This is unsurpris-
ing, bearing in mind that there are far fewer root position
harmonic symbols to discover.

Overall, the figures confirm the earlier finding that the
root position model gives a better description of the test
data (of course, the same proviso about the arbitrary back-
off strategies applies). In this case, it is due at least in part
to the greater number of unseen harmonic symbols, which
are assigned a very low probability. In addition, when an
unseen harmonic symbol is encountered, the model has
little or no idea which bass note scale degree to assign
to that chord, resulting in another low probability. The
final thing to note from this table is that overall, there is
a narrower spread of cross-entropies for the root position
model. For example, the difference between the highest
and lowest cross-entropies for the root position model is
0.823, compared with 1.018 for the inversions model; this
superior consistency might also be an indication that the
root position model is better.

5 Systematic Improvement of
Back-off Strategies

It should be noted from the beginning that the method
described below is not guaranteed to produce an optimal
back-off sequence; the method is less than rigorous in sev-
eral respects. It is, however, expected to result in a close
to optimal solution.

Computational Creativity 2007

84

‹

›
I
G

22

22

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘
˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘6 ˘

˘
˘
˘ ˘

‹

›
I
G

22

22

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘
˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘
˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

Figure 1: Low cross-entropy harmonisation of Winchester New, using the root position model trained on a fifteen-hymn
corpus, with an arbitrary back-off strategy

‹

›
I
G

22

22

˘˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘˘

˘
˘
˘ ˘
˘ ˘
˘ ˘
˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘
˘ ˘
˘ ˘

˘ ˘
˘ ˘
˘ ˘
˘ ˘
˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘6 ˘

˘
˘
˘ ˘

‹

›
I
G

22

22

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘
˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘
˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘

˘ ˘
˘ ˘
˘ ˘
˘ ˘

6 ˘˘
˘ ˘

˘ ˘
˘ ˘

˘
˘
˘ ˘

Figure 2: High cross-entropy harmonisation of Winchester New, using the root position model trained on a fifteen-hymn
corpus, with an arbitrary back-off strategy

Table 2: Cross-entropies from ten-fold cross-validation: inversions and root position models

Inversions model Root position model
Hymn Pass 1 Pass 2 Passes 1 & 2 “Unseen” symbols Pass 1 Pass 2 Passes 1 & 2 “Unseen” symbols

1 2.708 0.326 1.517 3 1.413 0.908 1.160 1
2 1.141 0.099 0.620 1 0.674 0.468 0.571 1
3 2.610 0.515 1.563 9 1.697 0.823 1.260 3
4 2.260 0.372 1.316 4 1.800 0.685 1.242 2
5 1.753 0.099 0.926 1 0.893 0.480 0.686 0
6 2.281 0.127 1.204 3 1.336 0.895 1.115 2
7 1.740 0.080 0.910 1 0.932 0.363 0.648 0
8 1.460 0.078 0.769 1 0.895 0.477 0.686 1
9 1.089 0.000 0.545 0 0.637 0.236 0.437 0

10 1.861 0.302 1.081 1 1.175 0.810 0.993 0
Overall 1.977 0.227 1.102 24 1.219 0.655 0.937 10

Computational Creativity 2007

85

5.1 Procedure Description

First of all, two new hymns are added to the test data,
making five in all. Having more test data will tend to
smooth out any statistical anomolies. In the first instance,
the back-off strategies to be improved are those of the root
position model, using a fifteen-hymn corpus. In order to
set a baseline standard, cross-entropies for the two passes
are initially calculated using zeroth-order models for all
of the sub-tasks. Following this, for each of the sub-task
models in turn, and with all of the other sub-task mod-
els set to zeroth-order, all relevant first-order contexts are
evaluated (in each case backing off to zeroth-order), and
then a back-off sequence is assembled for a complete first-
order sub-task model. The sequence starts with the con-
text achieving the lowest cross-entropy and ends with no
context at all, which has the highest cross-entropy.

For example, the single-symbol contexts relevant to
the sub-task model assigning harmonic symbols to the
majority of melody notes in each phrase are the previous
harmonic, previous melodic, current melodic and future
melodic symbols. It turns out that the current melodic
symbol achieves by far the lowest cross-entropy (which
is no great surprise), followed by the past harmonic, past
melodic and future melodic symbols. The back-off se-
quence is therefore assembled in this order, finishing off
with no context. Generally speaking, there will be no
back-off from the current melodic context; but on rare
occasions a previously “unseen” melodic symbol might
be encountered, necessitating back-off (e.g., the melodic
symbol “2b” does not exist in the current corpus, but could
theoretically occur).

5.2 Assumptions and Restrictions

Once all of the sub-task models have been through this
process, work can begin on marshalling the second-order
contexts. In order to avoid searching a huge number of
contexts (the number of possible different contexts in-
creases dramatically with overall context size) we have as-
sumed that the best combinations (i.e., those that achieve
the lowest cross-entropies) will contain the best context
from the next-lowest order of model. In the case of our ex-
ample sub-task model, therefore, the relevant dual-symbol
contexts all contain the current melodic symbol in addi-
tion to the past harmonic, past melodic and future melodic
symbols respectively. Once again, all of the other sub-task
models are set to zeroth-order, and the sub-task model un-
der consideration backs off directly from a dual-symbol
context to zeroth-order. We have assumed that a larger
context which subsumes a smaller one will always be bet-
ter than that smaller context, even if its cross-entropy is
higher, so that the new contexts need only be added to the
head of the back-off chain. There is some logic to this.
It is likely that smaller contexts will be matched more of-
ten than larger ones; therefore even though the resulting
individual probabilities might be lower, they can easily
contribute to a greater improvement in the overall cross-
entropy by virtue of the number of symbols assigned. The
assignment of fewer, but higher-probability symbols ear-
lier in the back-off sequence will improve things further.

The process continues for an arbitrary number of over-

all context sizes. It should be pointed out at this stage
that another simplifying restriction that we have imposed
is that symbols can only be added to the context such that
constituent parts of the context form chains, radiating out-
wards from the chord which is the focus of attention at the
time. For example, if the context contains harmonic sym-
bol i − 1 (immediately preceding current chord i), and
another past harmonic symbol is to be added, it must be
harmonic symbol i − 2 in the sequence from which the
context is taken.

The above assumptions, and issues around them, mean
that the method is not guaranteed to produce an optimum
solution. It is conceivable that larger contexts not contain-
ing the best context from the previous stage of the process
could achieve a lower cross-entropy; this can be tested.
Even if this were not the case, however, the poorer con-
texts could still contribute by being inserted somewhere
further down the back-off sequence. It is also conceivable
that some larger contexts that do contain the best previous
context might actually contribute to a deterioration in per-
formance. This can be guarded against by testing contexts
in conjunction with the full previously assembled back-off
sequence for a sub-task model.

Probably the best way of improving this “optimisa-
tion” method, however, is to calculate cross-entropies only
for the assignments that a particular context makes. It will
then be perfectly clear, for example, that a model assign-
ing only one harmonic symbol to a melody note with a
probability of 0.9 should be higher up the back-off se-
quence than a model assigning harmonic symbols to ten
melody notes, each with a probability of 0.8.

5.3 Results

The results are summarised in Table 3. Evaluation is car-
ried out using a set of test data comprising harmonisations,
found in hymnals, of five different hymn tunes. These
hymn tunes do not appear in the training corpus or in the
test data used in the “optimisation” process; they are com-
pletely “unseen” from the model’s point of view. Cross-
entropies for the test data used during the “optimisation”
procedure are also shown for comparison. The generated
harmony results are derived from harmonising the set of
melodies in the evaluation test data, since these melodies
are still “unseen” on any given run of the program.

As expected, there is a huge improvement in the model
between zeroth-order and first-order. There is a much
smaller, but still very significant improvement between
first-order and second-order. Unfortunately, due to the fact
that results have only so far been produced for three con-
text sizes, it is difficult to judge how the trend in improve-
ment will continue. The cross-entropy of 0.880 (“un-
seen” test data) for the second order model is significantly
higher than the 0.529 for the model with arbitrary back-
off. This latter model, however, has much longer back-off
sequences in terms of overall context size (although it has
far fewer instances of different contexts of the same size).

Another thing to notice is that the models predicting
bass note scale degrees (pass 2) perform significantly bet-
ter than those predicting harmonic symbols (pass 1). This
is also true for the model with arbitrary back-off. Finally,

Computational Creativity 2007

86

Table 3: Cross-entropy comparisons across context size and test data/generated harmony for a close to optimal root
position model trained on a fifteen-hymn corpus

Model Context “Optimisation” test data “Unseen” test data Generated harmony
type size Pass 1 Pass 2 Passes 1 & 2 Pass 1 Pass 2 Passes 1 & 2 Pass 1 Pass 2 Passes 1 & 2
Root 0 2.743 2.573 2.658 2.532 2.458 2.495 2.896 2.542 2.719

position 1 1.399 0.691 1.045 1.218 0.907 1.062 1.538 0.812 1.175
2 1.070 0.478 0.774 1.048 0.712 0.880 0.960 0.596 0.778

the cross-entropies of the generated harmony are similar
to those of the test data. This is in stark contrast with the
results of the model with arbitrary back-off, which shows
much lower cross-entropies for the generated harmony. It
seems likely that the similarity in this case, and dissimi-
larity in the former case, directly result from the very dif-
ferent back-off strategies employed.

6 Conclusions and Future Work
We have discussed ways in which Markov models used
for learning the creative human task of four-part harmon-
isation may be improved. Some preliminary studies have
been carried out, and the results presented.

The root position model describes the test data bet-
ter than the inversions model when the arbitrary back-
off strategies are employed; since it is possible that these
strategies are biased towards the root position model, an-
other comparison will be made using back-off strategies
thought to be close to optimal for each of the models.

Models using the arbitrary back-off strategies improve
significantly between corpus sizes of five and ten hymns,
but only very slightly between ten and fifteen hymns. The
corpus size will be increased further to test whether this
is a statistical aberration or a real effect. The studies will
be repeated using close to optimal back-off strategies to
find out if more “knowledge” can be extracted. This time,
for the generation side of the studies, hymn tunes not in
the test data (nor, of course, in the training corpus) will
be used, since the test data will have been employed for
“optimisation” purposes.

Models using close to optimal back-off strategies im-
prove greatly between zeroth-order and first-order. There
is a much smaller, but still very significant improvement
between first-order and second-order. Further work will
be done on the improvement of back-off strategies, in-
cluding: extending to higher-order contexts; calculating
cross-entropies only for the assignments that a particular
context makes; and investigating the effectiveness of con-
texts not containing the previous best context.

Future work also includes comparing the performance
of different arrangements of the root position model; for
example reversing the passes such that bass note scale de-
gree symbols are assigned before harmonic symbols, and
assigning both symbols on a chord by chord basis rather
than in two complete passes of the melody. An investi-
gation into the effect of increasing the number of chords
covered by the cadential models is also proposed, as well
as ascertaining whether or not the pre-cadential models
really make a useful contribution.

Consideration of the effect of metre and note duration
is also planned for the not-too-distant future. Clearly, ex-
tending the system to predict actual bass notes (rather than
just the scale degree), inner parts and, for example, pass-
ing notes, is a little further in the future.

References
Allan, M. (2002). Harmonising chorales in the style of

Johann Sebastian Bach. Master’s thesis, School of In-
formatics, University of Edinburgh.

Allan, M. and Williams, C. K. I. (2005). Harmonising
chorales by probabilistic inference. In L. K. Saul, Y. W.
and Bottou, L., editors, Advances in Neural Information
Processing Systems, volume 17. MIT Press.

Conklin, D. and Cleary, J. G. (1988). Modelling and
generating music using multiple viewpoints. In Pro-
ceedings of the First Workshop on AI and Music, pages
125–137. The American Association for Artificial In-
telligence.

Hild, H., Feulner, J., and Menzel, W. (1992). Harmonet:
A neural net for harmonizing chorales in the style of
J. S. Bach. In R. P. Lippmann, J. E. M. and Touretzky,
D. S., editors, Advances in Neural Information Process-
ing Systems, volume 4, pages 267–274. Morgan Kauf-
mann.

Katz, S. M. (1987). Estimation of probabilities from
sparse data for the language model component of a
speech recogniser. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400–401.

Manning, C. D. and Schütze, H. (1999). Foundations
of Statistical Natural Language Processing. The MIT
Press.

Nicholson, S., Knight, G. H., and Dykes Bower, J., editors
(1950). Hymns Ancient & Modern Revised. William
Clowes and Sons, Ltd.

Pearce, M. T. (2005). The Construction and Evaluation of
Statistical Models of Melodic Structure in Music Per-
ception and Composition. PhD thesis, Department of
Computing, City University, London.

Pearce, M. T., Meredith, D., and Wiggins, G. A. (2002).
Motivations and methodologies for automation of the
compositional process. Musicae Scientiae, 6(2):119–
147.

Ponsford, D., Wiggins, G. A., and Mellish, C. (1999). Sta-
tistical learning of harmonic movement. Journal of New
Music Research, 28(2):150–177.

Computational Creativity 2007

87

Vaughan Williams, R., editor (1933). The English Hym-
nal. Oxford University Press.

Wiggins, G. A. (1998). The use of constraint systems for
musical composition. In Proceedings of the 13th Bi-
ennial European Conference on Artificial Intelligence
(ECAI) Workshop: Constraint techniques for artistic
applications, Brighton, UK.

Computational Creativity 2007

88

Session 4

Applied Creative Systems

Computational Creativity 2007

89

Computational Creativity 2007

90

A practical application of computational humour

Graeme Ritchie
Computing Science

University of Aberdeen
Aberdeen AB24 3UE

gritchie@csd.abdn.ac.uk

Ruli Manurung ∗, Helen Pain
School of Informatics

University of Edinburgh
Edinburgh EH9 8LW

ruli.manurung@ed.ac.uk
H.Pain@ed.ac.uk

Annalu Waller, Rolf Black, Dave O’Mara
School of Computing
University of Dundee

Dundee DD1 4HN
awaller@computing.dundee.ac.uk

rolfblack@computing.dundee.ac.uk
domara@computing.dundee.ac.uk

Abstract

The past 15 years has seen the development of a number of
programs which perform tasks in the area of humour, but
these have been exploratory research prototypes, usually
on a very small scale, and none of them interacted with
users. Amongst those which actually created humorous
texts, theJAPEprogram was probably the most substantial,
but even it was far from being useful for any practical pur-
pose. We have developed a fully engineered riddle genera-
tor, inspired by the ideas in theJAPEsystem, which uses a
large-scale multimedia lexicon and a set of symbolic rules
to generate jokes. It has an interactive user interface, spe-
cially designed for children with complex communication
needs (CCN), so that users can make choices to guide the
riddle generator. The software is robust, stable, and re-
sponds sufficiently promptly that naive users can interact
without difficulty. It has been tested over with real users
(children with CCN), with highly positive results, and is
publicly available for free download.

Keywords: Computational humour, riddles, AAC, joke
generation

1 Introduction

Since 1992, research into computational humour has led
to a number of exploratory implementations, including
some joke-generation systems. However, these have gen-
erally been small exploratory research prototypes rather
than full practical applications. We have developed a
state of the art riddle-generation system which is com-
pletely usable by untrained and naive users, and which
has been evaluated in a systematic manner. Our program
(STANDUP - System To Augment Non-speakers Dialogue
Using Puns) is aimed at young children, and lets them

∗Now at Faculty of Computer Science, Universitas Indone-
sia, Depok 16424, Indonesia.maruli@cs.ui.ac.id

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

play with words and phrases by building punning riddles
through a simple interactive user-interface.

A punning riddle is a question-answer joke in which
the answer makes a play on words, as in (1).

(1) What kind of tree is nauseated?
A sick-amore.

What makes these jokes computationally manageable
(and also makes them good illustrative examples of simple
language mechanisms) is their reliance on simple linguis-
tic relations such as homophony and synonymy.

Our target users are children with impaired speech and
limited motor skills (as often results from cerebral palsy).
Suchcomplex communication needs(CCN) can result in
lower levels of literacy than in typically-developing coun-
terparts of the same age (Smith, 2005). This can pre-
vent full involvement in normal forms of language play
(Waller, 2006), leading to poorer skills in language, com-
munication and social interaction (Lindsay and Dock-
rell, 2000). TheSTANDUP software is a “language play-
ground”, with which a child can explore sounds and mean-
ings by making up jokes, with computer assistance. We
conjecture that this will have a beneficial effect on liter-
acy and communication skills, but our project addressed
two more basic research questions:

(i) is it feasible to build an interactive riddle-generator
which can be controlled by children with CCN?

(ii) if so, in what ways do such children use the software?

We have adopted the joke-construction mechanisms
of theJAPEprogram (Binsted, 1996; Binsted and Ritchie,
1994, 1997) as the core of our stable, usable, robust, user-
friendly, interactive system for children with CCN. In this
paper, we will describe what was involved in developing
a working application from the research ideas.

2 Computational Humour

At present, there is no theory of humour which is suffi-
ciently precise, detailed and formal to be implementable.
Hence computational humour has so far largely consisted
of small research prototypes based on mechanisms de-
signed specifically for whatever (narrow) problem was be-
ing tackled (for overviews, see Ritchie (2001b), Hulstijn
and Nijholt (1996), Stock et al. (2002)). Many of these

Computational Creativity 2007

91

programs have been generators of simple verbal jokes, and
have been very small studies (often student projects).

Lessard and Levison (1992) built a program which
created a simple type of pun, theTom Swifty. Lessard and
Levison (1993) sketch the workings of a program which
produced some basic forms of punning riddle. Venour
(1999) built a small program which generated simple texts
consisting of a one-sentence set-up and a punning punch-
line consisting of a head noun preceded by an adjective
or a noun modifier. All these used an existing natural
language generator, VINCI (Levison and Lessard, 1992).
The WISCRAIC program (McKay, 2002) produced sim-
ple puns in three different linguistic forms (question-
answer, single sentence, two-sentence sequence).

These systems operated with small amounts of hand-
crafted data, and were not given much serious testing. The
Lessard and Levison projects report no performance or
evaluation, while Venour and Mackay report very small
and not very systematic evaluations. (See Ritchie (2004,
Chap. 10) for a fuller review of these systems.)

As our program is a punning riddle generator,JAPE

(Section 3 below) and the systems reviewed above are
its antecedents. Other work in computational humour
has included a program which could construct amusing
acronyms (Stock and Strapparava, 2003, 2005), a recog-
niser for basic “knock-knock” jokes (Taylor and Mazlack,
2004), a study of how machine-learning techniques could
separate joke texts from non-jokes (Mihalcea and Strappa-
rava, 2006), a very preliminary generator for insults based
on ‘scalar humour’ (Binsted et al., 2003), and a program
which, for a particular class of jokes, selects a punchline
for a joke set-up (Stark et al., 2005). Although some of
these were on a slightly larger scale than the pun gener-
ators described above, all of them were research proto-
types, with no claims to be usable applications.

3 The JAPE riddle generator

TheJAPEprogram (Binsted and Ritchie, 1994, 1997; Bin-
sted, 1996) generated certain classes of punning riddles.
Some of the better examples were the following:

(2) How is a nice girl like a sugary bird?
Each is a sweet chick.

(3) What is the difference between leaves and a car? One
you brush and rake, the other you rush and brake

(4) What is the difference between a pretty glove and a
silent cat? One is a cute mitten, the other is a mute
kitten.

(5) What do you call a strange market? A bizarre
bazaar.

JAPE used three types of symbolic rules (schemas, de-
scription rules, templates) to characterise the possible lin-
guistic structures (Ritchie, 2003). Our variants of these
mechanisms are described in detail below (Section 4).

JAPE stands out from the other early pun-generators
in two respects: it used a large, general-purpose lexicon,
WordNet (Miller et al., 1990; Fellbaum, 1998), rather than

a small hand-crafted one, and a properly controlled evalu-
ation of the output was carried out (Binsted et al., 1997).
The latter study showed thatJAPE-generated jokes were
reliably distinguished from non-jokes, human-generated
jokes were more often deemed to be jokes thanJAPE-
generated jokes,JAPE-generated jokes were funnier than
non-jokes, and human-generated jokes were funnier than
JAPE-generated jokes. Also, aJAPEoutput ((3) above) was
rated the funniest in the data set.

As well as developing the mechanisms for punning
riddle generation, Binsted suggested, in passing, the idea
of using such a program for interactive language teach-
ing. However, theJAPE implementation was still just a
research prototype, and there were certain aspects which
would have to be altered or rebuilt if it was to be used for
practical purposes. These limitations were roughly in the
areas ofusabilityandoutput quality. To be more precise:

(i) The only behaviour of the program was to create
riddles, one after another, with very few parameters
available for variation. Also, these parameters were
internal to the mechanism (e.g. the choice of schema)
and might not make sense to an ordinary user.

(ii) The program worked by exhaustively searching for
words and phrases which would match its schemas
and templates. There was no way to guide the soft-
ware (e.g. to make a joke on a particular topic).

(iii) There was no real user interface – the user (always
a knowledgeable researcher) would invoke the pro-
gram from a simple command interface.

(iv) The search for suitable words, being unintelligent
and exhaustive, could (with a large lexicon) be very
slow; Binsted’s test runs took hours. Hence, the re-
sponse time was useless for interaction with a user.

(v) The jokes were of very variable quality, with the pro-
portion of intelligible jokes being quite small; the
proportion ofgoodintelligible jokes was very small.

(vi) Facilities for comparing words for similarity of
sound were quite primitive. In particular, there
was no provision for approximate matches (near-
homophony) and correspondences between written
and phonetic forms of words were slightly ad hoc.

Of these, (iii) and (iv) had to be remedied for our ap-
plication, and (i) and (ii) were serious drawbacks. The
more we could do about (v), the better, and addressing
(vi) would contribute to this.

4 The joke generator

The STANDUP generator consists of three stages, as in
JAPE; all are implemented in Java. Each stage consists
of instantiating a particular kind of rule:schemas(Sec-
tion 4.1),description rules(Section 4.2) – both supported
by a large dictionary– andtemplates(Section 4.3).

Computational Creativity 2007

92

4.1 Schemas

A schema consists of 5 parts:

Header: This attaches a symbolic name to the schema,
and lists its parameters.

Lexical preconditions: This is a collection of constraints
specifying the core items needed for a particular sub-
class of riddle. Items can be eitherlexemes(lexical
entries) orword forms(the orthographic textual rep-
resentation of a word). Constraints can involve syn-
tactic categorisation (e.g. a lexeme is a noun), pho-
netic relations (e.g. two items rhyme), structural re-
lations (e.g. an itemX is a compound noun made up
of componentsY andZ), and semantic relations (e.g.
one lexeme is a hypernym of another).

Question specification: This specifies how certain vari-
ables in the schema are, once instantiated, to be de-
scribed within the question part of the eventual rid-
dle. This, and the answer specification, supply the
input to the description rules (Section 4.2 below).

Answer specification: This is like theQuestion specifi-
cation, but contributes to the answer in the riddle.

Keywords: This lists the subset of the schema’s variables
which will be bound to lexemes. It is used to define
a notion ofequivalencebetween similar riddles: two
riddles are deemed equivalent if they use the same
schema with the same instantiation of the keyword
variables. The generator tracks which instantiations
have been used so far with a particular user, and does
not offer ‘equivalent’ jokes again to the same user.

Informally, the schema’s variables can be instantiated with
values from the lexicon, providing they meet the con-
straints in the lexical preconditions.

There are 11 schemas (for 11 underlying kinds of
joke). A typical schema is given in Figure 1. Following

Header: newelan2(NP, A, B, HomB)
Lexical preconditions:

nouncompound(NP,A,B),
homophone(B,HomB), noun(HomB)

Question specification:
{shareproperties(NP, HomB)}

Answer specification: {phrase(A,HomB)}
Keywords: [NP, HomB]

Figure 1: A typical STANDUP schema

the practice of theJAPE system, relations and proper-
ties are expressed here in Prolog-style (logic-like) nota-
tion, with predicates applied to arguments. Although each
schema was designed using this notation, in the actual im-
plementation the lexical preconditions were compiled into
an expression in the database query language SQL, to fa-
cilitate the finding of suitable variable values within the
lexical database (implemented using the PostgreSQL soft-
ware package1). This compilation was done by hand, al-
though in principle the process could be fully automated.

1
http://www.postgresql.org

Thenewelan2 schema given above could have an in-
stantiation in whichNP= computer screen, A = computer,
B = screen, andHomB= scream(the relationhomophone
means that the two items lie within the current threshold
for phonetic similarity; i.e. “homophones” can be approx-
imate). This could give rise (after two further phases of
processing — Sections 4.2, 4.3 below) to a riddle such as
(6):

(6) What do you call a shout with a window?
A computer scream.

The question specification and the answer specifica-
tion show how the instantiating values have to be
passed on to the next phase (Section 4.2 below), by
embedding the relevant variables within symbolic ex-
pressions which act as signals about what is to be
done with these values. In this example, the question
specification would beshareproperties(computer
screen, scream) and the answer specification would
bephrase(computer, scream) .

4.2 Constructing descriptions

The middle phase of joke generation – constructing de-
scriptions – was not inJAPE-1 (Binsted and Ritchie, 1994,
1997), but was introduced inJAPE-2 (Binsted, 1996; Bin-
sted et al., 1997). It encodes possible linguistic variations,
given core values from the schema instantiation.

The question specification and answer specifica-
tion are handled separately. Each is matched non-
deterministically against a set of description rules. These
rules have a structure roughly similar to schemas, in that
they have aheader, somepreconditions, and an output ex-
pression, thetemplate specifier(Figure 2).

Header: shareproperties(X,Y)
Preconditions:

meronym(X, MerX), synonym(Y, SynY)
Template specifier: [merHyp, MerX, SynY]

Figure 2: A sample description rule

In the example above, the question specification
shareproperties(computer screen, scream)
would match the header for the rule in Figure 2. This
matching causes the data values (computer screen,
scream) to be bound to the local variablesX,Y of the
rule, ready for the preconditions of the rule to be tested.
These preconditions check further lexical properties
and relations, to determine whether this rule is actually
applicable in this case. (As with schema preconditions,
the implementation represents these expressions in SQL,
to facilitate searching of the lexical database.) This may
involve testing for the existence of further values (e.g.
values forMerX, SynY in the example above), thereby
resulting in the binding of more variables (local to the
rule). For example, starting fromX = computer screen
and Y = scream, the precondition testing might find
(in the lexicon) variable valuesMerX = window and
SynY = shout, thereby satisfying all the conjuncts of
the precondition. If the precondition testing succeeds,
the template specifier is instantiated (using the current

Computational Creativity 2007

93

variable values), and these expressions are passed on to
the third stage of joke generation,template filling. Here,
this expression would be[merSyn, window, shout]).

The answer specification phrase(computer,
scream) matches a very basic description rule which
passes both values on in an expression[simple,
computer, scream] ; this will later be interpreted (at
the template phase) as a concatenation command.

However, the same schema instantiation could have
led, if other values were found forMerX andSynY in the
description rule used for the question, to a slightly differ-
ent variant, such as (7).

(7) What do you call a cry that has pixels?
A computer scream.

Or if a different description rule had been chosen for the
question specification, the joke might have been (8).

(8) What do you get when you cross a shout with a dis-
play?
A computer scream.

Here, the central idea of the joke (captured by the schema
instantiation) is essentially the same in all three versions.

Hence, there are two distinct mechanisms used to
achieve textual variation. The variation illustrated above
involves slightly different phrases which originate from
the same semantic material expanded and realised in vary-
ing ways. These are constructed by this middle phase,
which is a non-humorous set of linguistic rules about how
to build descriptive phrases. (These variations usually oc-
cur in the riddle’s question, but the data for the answer
is also passed through this middle stage, so as to have a
cleaner architecture, and also to allow for possible minor
adjustments being needed in the linguistic form of the an-
swer data, which does occur with some joke types.)

On the other hand, different stereotyped joke-framing
phrases, such asWhat do you get when you cross or
What is the difference between are handled by the
third phase (Section 4.3) below.

4.3 Surface templates

A template is, loosely speaking, a fixed string of text with
some blank slots available for other textual material to be
inserted. Building text by filling data (e.g. phrases) into
a template is a long-standing and much-used approach to
the generation of simple natural language text (Reiter and
Dale, 2000). It lacks linguistic subtlety and can be inflexi-
ble, but it is very convenient when a particular application
(as here) needs to build a few stereotyped forms of text
which vary only in a few well-defined places. We have
three types of template:phrasal, questionand answer.
Phrasal templates put the finishing touches to phrases built
by the previous stage (description construction), for exam-
ple inserting articles or prepositions as needed. A question
template has the broad outline of a riddle question (e.g.
What do you call a ?) with slots for phrases to be
inserted, and an answer template has the broad structure
of a riddle answer (e.g.They’re both) with slots for
phrases to be inserted.

A template has two parts: theheader and the
body. The expressions provided by the description rules,

such as[merSyn, window, shout] and [simple,
computer, scream] are non-deterministically matched
against the headers of templates of the appropriate type
(question or answer). This causes variables in the tem-
plate header to be instantiated to the values (such as
window, shout). These values are thereby passed into
the body, which is a skeletal textual structure, such as
What do you call a NP(X,Y) . Recursively, the tem-
plate handler matchesNP(shout, window) to a set of
phrase templates, one of which yieldsNP(shout) with a
NP(window), and a further template match producesa
shout with a window. The answer is also produced by
the template module, but for an expression like[simple,
computer, scream] there are no recursive calls – a sin-
gle phrasal template producesa computer scream.

There are various restrictions about which question
templates are compatible with which answer templates,
and also which templates are viable for the values coming
from a particular schema. These combinations are coded
up in a table; these are known as thejoke types, as we
found it useful to characterise types of joke in terms of
underlying rule combinations.

5 Going beyond JAPE

5.1 The lexicon

Using WordNet as its dictionary gaveJAPE several
benefits: many lexical entries (about 200,000), word-
senses grouped into synonym sets, information about hy-
ponym/hypernyms and meronyms; and the data is freely
available in machine-manipulatable form. We therefore
took WordNet as our starting point. However, before de-
signing our system, we carried out consultations with rele-
vant experts: adult users of software for augmentative and
alternative communication (AAC), and speech/language
therapists. This added further requirements to those
needed just for joke generation.

5.1.1 Pictures

Our experts were adamant that children with limited lit-
eracy would need pictorial images to be displayed along-
side words wherever possible. Preferably, these images
should be familiar, and compatible with other uses of im-
ages that the children might have met. Fortunately, two
companies who produce AAC software (Widgit Software
Ltd and Mayer-Johnson LLC) kindly gave us permission
to use their picture libraries. However, we had to expend
a considerable amount of effort manually linking pictures
to appropriate WordNet senses (not just to word forms).

5.1.2 Phonetic representation

In order to construct approximate puns (e.g. matching
rude and road), we needed a representation of the pho-
netic form of each word (orthography, as in WordNet,
can be misleading for punning). We used the Unisyn
pronunciation dictionary2 to add phonetic forms to more
than 115,000 word forms in our lexicon. This allowed
the implementation of a more subtle matching algorithm

2
http://www.cstr.ed.ac.uk/projects/unisyn

Computational Creativity 2007

94

for phonetic similarity (near-homophony), based on Lade-
foged and Halle (1988) and minimum edit-cost.

5.1.3 Familiarity of words

It is essential to be able to restrict the available vocabu-
lary to words which the intended users (young children,
perhaps with poor literacy) are likely to know, as there
will be no beneficial effect, and probably some demorali-
sation, if the software produces riddles with words which
are totally incomprehensible.JAPE was liable to produce
riddles using extremely obscure words, such as (9).

(9) What do you get when you cross a vitellus and a sad-
dlery? A yolk yoke.

All the available sources of word-familiarity informa-
tion manifested one (or more) of three problems: assign-
ing ratings (e.g. corpus frequencies) toword-forms, not to
word-senses; sparseness, i.e. covering only a few thousand
words; unreliability or unsuitability for our purposes. To
address this, we applied a hybrid strategy, which there is
not space here to document. This involved assigning rat-
ings ofpriority to several different resources and also scal-
ing the ratings from each resource into a sub-interval of
[0,1]. A word-sense was then assigned a rating (in [0,1])
by the highest priority source for which it had a rating.

TheSTANDUP joke generator has an (adjustable) filter
on the ratings of the lexemes used. This can be used to
limit the unfamiliarity of words used.

5.1.4 Vocabulary restriction

It must be possible to avoid the use of words which
are highly unsuitable for the user population (e.g. swear
words, sexual terminology).JAPE was quite capable of
producing jokes which, while semantically valid, were so-
cially unacceptable for our target audience; e.g. (10).

(10) What do you call a capable seed?
An able semen.

We introduced ablacklist which contains words that
must not be used anywhere by the system. It was popu-
lated by searching the Shorter Oxford English Dictionary
for all entries tagged as eithercoarse slangor racially of-
fensive; a few further entries were added to this list by the
project members based on personal knowledge of words
likely to be deemed unsuitable by teachers. (Despite this,
a teacher objected to one riddle with quite innocent lex-
emes:What do you call a queer rabbit? A funny bunny.)

5.2 Avoiding simple faults

Although theJAPE riddle generator produced structurally
correct texts, some of them were far from acceptable as
jokes. We implemented various heterogeneous improve-
ments, generally formal checks to eliminate configura-
tions of lexemes which would lead to (intuitively speak-
ing) poorer output; that is, we did not so much positively
improve the jokes as selectively close off some of the more
noticeable and formally definable routes to weak jokes.

5.2.1 Shared roots.

Early versions ofSTANDUP produced riddles in which the
same word (or morphological variants of a word) appeared
in both the question and the answer, which tended to spoil
the joke:What do you get when you cross a school princi-
pal with a rule? A principal principle.Using information
from the Unisyn dictionary we were able to associate a
‘root’ field with lexemes, and filter out riddles in which
the same root appeared in question and in answer.

5.2.2 Excessive abstraction.

Many words in our lexicon were ultimately linked (via the
WordNet hyponym/hypernym hierarchy), to very abstract
entries such asentityor human activity. This could cause
riddles to be excessively obscure; for example:What do
you get when you cross an aristocracy with a quality? A
nobility mobility. Here,quality is a hypernym ofmobil-
ity, but this gives an excessively imprecise question. We
therefore placed some of the roots of the hypernym for-
est in a further list of lexemes to be excluded from use.
This was done by subjective judgement of the degree of
abstraction, not by considering jokes which included the
concepts. Although this removed many baffling riddles,
the phenomenon of unworkable abstraction is more sub-
tle. Example (11) is from an early version ofSTANDUP

(before we improved the phonetic matching), and presum-
ably puns ondouble-decker(a two-level bus):

(11) What do you call a cross between a coach and a
trained worker?
A double baker.

The phrasetrained workeris found by a description
rule seeking hypernyms ofbaker. But trained worker, al-
though not as wildly abstract asentity or quality, is still
too vague to invoke the specific notion ofbaker. A hyper-
nym should be used in a riddle question only if it is close
enough in meaning to the target item (here,baker). It is
hard to specify an appropriate criterion of “closeness”.

5.3 Changes in coverage

STANDUP’s set of schemas is slightly different from that
in JAPE. Although we added one further schema (so that
substitutions of a word into another word could happen at
the end as well as at the start), there were fewer schemas
(11 to JAPE’s 15). This is due to two factors. Firstly, we
were able to combine certainJAPE schemas which were
very similar. Secondly, we had to omit some of theJAPE

schema, for jokes such as (3). These schemas rely on in-
formation about what nouns are suitable subjects or ob-
jects for verbs, which, in theJAPE project, was compiled
by hand in a relatively labour-intensive fashion. It was not
clear how best to scale this up automatically (although it
is conceivable that “Word Sketch” data (Kilgarriff et al.,
2004) might help). Given the limited resources of our
project, we had to do without these schemas. This high-
lights the difference in purpose between a research proto-
type and a working system. A prototype is often built to
test whether some particular algorithm or design will work
in principle – a proof of concept. This can be achieved
if the necessary knowledge resources or environment can

Computational Creativity 2007

95

be created, even if only on a small scale. Thus, Binsted
demonstrated a valid computational route to riddles such
as (3) (and one or two other verb-based types), but this is
very different from devising a practical means to make a
large scale system which exploits this route.

5.4 User interaction

Perhaps the most significant advance in theSTANDUPsys-
tem is interaction between user and joke generator. There
is a bright, colourful child-friendly GUI, using specially-
designed graphic images, which allows the user to con-
trol the generator through a number of buttons. Thus a
joke can be requested which contains a specified word, is
on a given topic (e.g.animals) or is of a given type (e.g.
where the start of words are swapped round). The user
can browse through past jokes made at previous sessions,
or save jokes to his/her own ‘favourites’. When choosing
a word for a joke, the user can browse through the lexicon.

Response time ranges from under a second to several
seconds. This has been achieved by efficient coding and
by caching (as database tables) lexical information used
by the joke generator, such as near-homophone lists, tu-
ples of lexemes forming spoonerisms, etc., and also in-
stantiations of schemas.

The software has a Control Panel through which a re-
searcher, teacher or carer can customise the system’s be-
haviour (what appears on the screen, what kinds of jokes
are available, what input/output mechanisms are used,
etc.) for individual users, in a very flexible manner.

5.5 Joke telling

Part of the motivation for this work came from the idea
that a child who used a voice-output communication aid
(VOCA) – i.e. using a speech synthesiser in order to
“speak” – might like to incorporate jokes into their con-
versation. However, it would have been over-ambitious
to attempt to incorporate the joke-building functionality
into a VOCA at this stage of development, so we instead
developed a stand-alone system which a child could ex-
periment with. Our software had a built-in text-to-speech
system (using FreeTTS3) for reading messages, button la-
bels, etc. to the user. There was also a facility whereby the
user could, having obtained a joke, “tell” it step-by-step
(question, pause, answer) by getting the software to speak
the text, with the user controlling this process through the
pointing device. This proved to be highly popular with
the users (Section 6 below), as the children could tell their
newly-built jokes immediately without having to switch
over to their VOCA and enter the text.

6 Evaluating the system

For our software, usability and effectiveness for our tar-
get group were central. We therefore evaluatedSTANDUP

with a group of children with CCN (fuller details can be
found elsewhere).

A single case-study methodology was used with nine
pupils at a special-needs primary school. All had cere-

3
http://freetts.sourceforge.net/docs/index.php

bral palsy, and were in the 8 - 13 year age group. Their
literacy levels were rated as eitheremergingor assisted.
Eight of the participants were users of various communi-
cation aids, and could interact with these via touch screens
or, in four cases, head switches. Children were taken
through five phases:baseline testing, introductory train-
ing, intervention, evaluation, post-testing, where the three
central phases involved sessions with the software.In-
troductory trainingconsisted of familiarisation with the
system, aided by one of the project team.Interventionin-
volved the child having a simple task (suggested by the
researcher) to try with the software, such as finding a joke
on a particular topic. The researcher also offered guidance
as necessary. For theevaluationphase, tasks were again
suggested, but no help was given unless absolutely essen-
tial. Sessions were video-taped for analysis, and the soft-
ware logged user-interactions into a disk file. Follow-up
interviews and questionnaires were conducted with school
staff and the participants’ parents.

In the baseline testing, two standard multiple-choice
tests for facility with words were administered: Clini-
cal Evaluation of Language Fundamentals, CELF, (Semel
et al., 1995), in which 27 questions each ask for a choice
of 2 semantically related words from a set of 4, and a
rhyme-awareness test from the Preschool and Primary In-
ventory of Phonological Awareness, PIPA (Frederickson
et al., 1997). We also tested each child’s grasp of punning
riddles, using the Keyword Manipulation Task (O’Mara,
2004), simply to check our assumptions about the level of
the children’s understanding.

The post-testingwith PIPA (testing awareness of
rhyme) showed no signs of improvement (although 6 of
the 9 scored above 80% on both pre- and post-test, sug-
gesting a possible ceiling effect). On the CELF post-test,
all but one of the participants improved, the mean im-
provement being 4.1 out of 27 (paired t-test, two-tailed,
yields t = −3.742, df = 8, p = 0.006). It is difficult to
conduct randomised controlled trials in the AAC field, as
the set of people who use AAC tends to be highly hetero-
geneous. In the absence of any comparison with a control
group, it is hard to infer much from the scores.

All the children reacted very positively to their time
with the STANDUP software. One of the older boys, who
had good verbal abilities, complained about the quality of
the jokes, but made insightful comments on possible im-
provements to the system. The pupils spontaneously used
the software (some without need for prompting), enjoyed
having the software tell the jokes to others, and re-told the
jokes afterwards to parents and others. Children initiated
interaction, some for the first time. This may be because
they felt that the program provided them with novel lan-
guage, and that they could truly control an interaction by
telling a new joke, instead of repeating vocabulary stored
in devices by their therapists/teachers. The computer-
generated jokes became part of an existing class project,
with pupils posting their favourite examples publicly.

Although this was a very small qualitative study, with
no ambitions to show skill improvements over such a
short term, there was anecdotal evidence (from parents
and teachers) that children’s attitudes to communication
had improved. Since it was far from clear at the outset

Computational Creativity 2007

96

of our project whether children with CCN would even be
able to use the planned software, the results are not trivial.

7 Discussion

7.1 The outcome

We have designed and built a fully working, large-scale,
robust, interactive, user-friendly riddle generator, with a
number of auxiliary facilities such as speech output and
adjustable user profiles, remedying the limitations ofJAPE

listed in Section 3. It can create millions of jokes, has been
evaluated in a non-trivial way, and is available for down-
load over the WWW. Although we started from theJAPE

ideas, our design and implementation effort was probably
around four to five person-years of full-time work (exclud-
ing the evaluation). The area where further improvement
is most needed is joke quality.

7.2 Creativity

7.2.1 Is the software creative?

Binsted did not claim thatJAPE was creative, but Bo-
den (1998, 2003) discusses it as an example of a cre-
ative program. GivenSTANDUP’s relationship toJAPE,
the question of creativity again arises. Anecdotal evidence
suggests that the program produces novel and acceptable
jokes, but, in the absence of a formal evaluation of the out-
put (cf. Binsted et al. (1997)), no solid claim can be made.
All of these jokes are based on hand-crafted schemas, so
there is no creation of noveltypesof joke. (In the sense of
Boden (1998), such innovation would betransformational
rather thanexploratorycreativity.)

Is STANDUP “more creative” thanJAPE? The devices
described in Section 5 above alter the set of output items
(compared toJAPE’s, or – more realistically – to an earlier
version ofSTANDUP). The modifications in Section 5.2
eliminate poorer items, thereby enhancing the overall out-
put quality. By the formal criteria 1 to 4 (and possi-
bly 5) in Ritchie (2001a, forthcoming), the elimination of
faulty items would improve the program’s ratings, as these
criteria assess theproportion of the output items which
are categorisable as jokes, or which are classed asgood
jokes. Some other changes (Section 5.3) eliminate cer-
tain classes, making the output set less varied. Ritchie’s
proposed criteria do not assess output set variety, so this
would not affect the rating of theSTANDUP program, but
Pereira et al. (2005) hint that less variety in output is a sign
of lower creativity. It is hard to draw firm conclusions here
(except perhaps that these criteria are insufficiently subtle
for making fine comparisons of creativity).

7.2.2 Supporting creativity

Given that the whole project was intended to give support
to the users’ skills development, perhaps a relevant view-
point to consider is the extent to which the software sup-
ports or encourageshumancreativity. This is very hard to
assess. If there were a fuller study to determine the effect
of software usage on a child’s skills (including social ac-
tions), perhaps some educational tests of creative thinking
could be used to assess this aspect.

7.3 Future directions

Further studies. It would be very illuminating to carry
out a long term study of the use of the software by chil-
dren, to obtain some idea of the effects such language play
has on linguistic, communicative or social skills. Com-
parisons with other “language play” educational software
would be interesting, as would studies with other user
populations (e.g. children with autism, second-language
learners).

Improving the system. Because of our requirements
studies (and the limited time available), we implemented
relatively simple facilities for user interaction. These
could be extended, to allow greater participation by the
user in the joke-building process. It would also be inter-
esting to handle other joke types (e.g. ‘knock-knock’ jokes
(Taylor and Mazlack, 2004)).

A testbed for humour. TheSTANDUP software could be-
come a framework to test ideas about humour, in limited
ways. Allowing users to record reactions to jokes would
allow the collection of data about which generated items
work best, a resource for researchers. Alternatively, it
might be possible to embed, in a future version, some con-
jecture about factor(s) which affect funniness, and then
determine the empirical effectiveness of this.

7.4 Conclusions

Computational humour may still be at a basic level, but
the work here represents an significant milestone in its de-
velopment: a complete working system that addresses a
practical application and is accessible for ordinary users.

Acknowledgements

This work was supported by the UK’s Engineering and
Physical Sciences Research Council. The Widgit Rebus
symbols are the property of Widgit Software Ltd and are
used under licence. The Picture Communication Symbols
are the property of Mayer-Johnson LLC and are used un-
der licence. We are extremely grateful to Capability Scot-
land and the staff and pupils at Corseford School for their
help with the evaluation sessions.

References

Binsted, K. (1996). Machine humour: An implemented
model of puns. PhD thesis, University of Edinburgh,
Edinburgh, Scotland.

Binsted, K., Bergen, B., and McKay, J. (2003). Pun and
non-pun humour in second-language learning. InWork-
shop Proceedings, CHI 2003, Fort Lauderdale, Florida.

Binsted, K., Pain, H., and Ritchie, G. (1997). Chil-
dren’s evaluation of computer-generated punning rid-
dles.Pragmatics and Cognition, 5(2):305–354.

Binsted, K. and Ritchie, G. (1994). An implemented
model of punning riddles. InProceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-
94), Seattle, USA.

Computational Creativity 2007

97

Binsted, K. and Ritchie, G. (1997). Computational rules
for generating punning riddles.Humor: International
Journal of Humor Research, 10(1):25–76.

Boden, M. A. (1998). Creativity and Artificial Intelli-
gence.Artificial Intelligence, 103:347–356.

Boden, M. A. (2003). The Creative Mind. Routledge,
London, 2nd edition. First edition 1990.

Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, Mass.

Frederickson, N., Frith, U., and Reason, R. (1997).
The Phonological Assessment Battery. NFER-Nelson,
Windsor.

Hulstijn, J. and Nijholt, A., editors (1996).Proceedings of
the International Workshop on Computational Humor,
number 12 in Twente Workshops on Language Tech-
nology, Enschede, Netherlands. University of Twente.

Kilgarriff, A., Rychly, P., Smrz, P., and Tugwell, D.
(2004). The Sketch Engine. InProceedings of EU-
RALEX 2004, pages 105–116, Lorient, France.

Ladefoged, P. and Halle, M. (1988). Some major fea-
tures of the international phonetic alphabet.Language,
64(3):577–582.

Lessard, G. and Levison, M. (1992). Computational
modelling of linguistic humour: Tom Swifties. In
ALLC/ACH Joint Annual Conference, Oxford, pages
175–178.

Lessard, G. and Levison, M. (1993). Computational mod-
elling of riddle strategies. InALLC/ACH Joint Annual
Conference, Georgetown University, Washington, DC,
pages 120–122.

Levison, M. and Lessard, G. (1992). A system for natural
language generation.Computers and the Humanities,
26:43–58.

Lindsay, G. and Dockrell, J. (2000). The behaviour and
self-esteem of children with specific speech and lan-
guage difficulties.British Journal of Educational Psy-
chology, (70):583–601.

McKay, J. (2002). Generation of idiom-based witticisms
to aid second language learning. In Stock et al. (2002),
pages 77–87.

Mihalcea, R. and Strapparava, C. (2006). Learn-
ing to laugh (automatically): Computational models
for humor recognition. Computational Intelligence,
22(2):126–142.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and
Miller, K. (1990). Five papers on WordNet.Interna-
tional Journal of Lexicography, 3(4). Revised March
1993.

O’Mara, D. (2004). Providing access to verbal humour
play for children with severe language impairment.
PhD thesis, Applied Computing, University of Dundee,
Dundee, Scotland.

Pereira, F. C., Mendes, M., Gervás, P., and Cardoso, A.
(2005). Experiments with assessment of creative sys-
tems: an application of Ritchie’s criteria. In Gervás,
P., Veale, T., and Pease, A., editors,Proceedings of the

Workshop on Computational Creativity, 19th Interna-
tional Joint Conference on Artificial Intelligence, vol-
ume 5-05 ofTechnical Report, pages 37–44. Departa-
mento de Sistemas Inforḿaticos y Programación, Uni-
versidad Complutense de Madrid.

Reiter, E. and Dale, R. (2000).Building Natural Lan-
guage Generation Systems. Cambridge University
Press, Cambridge, UK.

Ritchie, G. (2001a). Assessing creativity. InProceed-
ings of the AISB Symposium on Artificial Intelligence
and Creativity in Arts and Science, pages 3–11, York,
England.

Ritchie, G. (2001b). Current directions in computational
humour.Artificial Intelligence Review, 16(2):119–135.

Ritchie, G. (2003). The JAPE riddle generator: technical
specification. Informatics Research Report EDI-INF-
RR-0158, School of Informatics, University of Edin-
burgh, Edinburgh.

Ritchie, G. (2004).The Linguistic Analysis of Jokes. Rout-
ledge, London.

Ritchie, G. (forthcoming). Some empirical criteria for at-
tributing creativity to a computer program.Minds and
Machines. To appear.

Semel, E., Wiig, E. H., and Secord, W. A. (1995).Clinical
Evaluation of Language Fundamentals 3. The Psycho-
logical Corporation, San Antonio, Texas.

Smith, M. (2005). Literacy and Augmentative and Al-
ternative Communication. Elsevier Academic Press,
Burlington.

Stark, J., Binsted, K., and Bergen, B. (2005). Disjunctor
selection for one-line jokes. In Maybury, M. T., Stock,
O., and Wahlster, W., editors,Proceedings of First
International Conference on Intelligent Technologies
for Interactive Entertainment, volume 3814 ofLecture
Notes in Computer Science, pages 174–182. Springer.

Stock, O. and Strapparava, C. (2003). HAHAcronym: Hu-
morous agents for humorous acronyms.Humor : Inter-
national Journal of Humor Research, 16(3):297–314.

Stock, O. and Strapparava, C. (2005). The act of creat-
ing humorous acronyms.Applied Artificial Intelligence,
19(2):137–151.

Stock, O., Strapparava, C., and Nijholt, A., editors (2002).
Proceedings of the April Fools’ Day Workshop on Com-
putational Humor, number 20 in Twente Workshops on
Language Technology, Enschede, Netherlands. Univer-
sity of Twente.

Taylor, J. M. and Mazlack, L. J. (2004). Computationally
recognizing wordplay in jokes. InProceedings of Cog-
nitive Science Conference, pages 2166–2171, Stresa,
Italy.

Venour, C. (1999). The computational generation of a
class of puns. Master’s thesis, Queen’s University,
Kingston, Ontario.

Waller, A. (2006). Communication access to conver-
sational narrative. Topics in Language Disorders,
26(3):221–239.

Computational Creativity 2007

98

Automatizing Two Creative Functions for Advertising

Carlo Strapparava and Alessandro Valitutti and Oliviero Stock
FBK-irst, I-38050, Povo, Trento, ITALY

{strappa, alvalitu, stock }@itc.it

Abstract

The creation of advertising messages is a deep process of
creative writing production. As far as the textual content
is concerned, there are not many computational tools (be-
sides the usual dictionaries, thesauri or program for per-
forming of simple wordplays) that help the copywriter ac-
tivity. In this work we explore the use of natural language
processing and text animation techniques for proposing
solutions to advertising professionals and improving the
quality of advertising messages. In the proposed system,
we consider two steps: (i) the creative variation of famil-
iar expressions, taking into account the affective content
of the produced text, (ii) the automatic animation (seman-
tically consistent with the affective text content) of the re-
sulting expression, using kinetic typography techniques.

Keywords: Natural Language Processing, Affective
Text, Lexical Semantics, WORDNET, Text Animation.

1 Introduction

In modern advertising practice, it is common of “cre-
atives” to be recruited and hired in pairs formed by a copy-
writer and an art director. They work in a creative part-
nership to conceive, develop and produce effective adver-
tisements. While the copywriter is mostly responsible for
the textual content of the creative product, the art director
focalizes efforts on the graphical presentation of the mes-
sage. Advertising messages tend to be quite short but, at
the same time, rich of emotional meaning and persuasive
power. While computational tools are an essential com-
plement in many creative activities, e.g. graphical design,
there are few tools for creation of textual messages (ex-
cept for the usual dictionaries, thesauri or programs for
performing simple wordplays).

In this paper we explore the development of compu-
tational tools to improve the quality of advertising mes-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

sages, reducing the development time and possibly open-
ing up the way to a full automatization of the whole pro-
cess of creative writing production. We combine some
computational functionalities for the creation of advertis-
ing messages. In particular, we implemented a strategy
that is articulated in two steps. The first consists of the
selection and creative variation of familiar common sense
expressions (e.g. proverbs, idioms, cliches, movie titles,
famous citations, etc.). The second step consists of the
presentation of the expression through an automated text
animation, and it is based on the use of kinetic typography.
As we will see, the text animation can be built semanti-
cally consistent with the emotion we want to convey.

1.1 Advertising Messages and Optimal Innovation

An advertising message induces in the recipient a positive
(or negative) attitude toward the subject to advertise (Petty
and Wegener, 1998), for example through the evocation of
an appropriate emotion. Another mandatory characteristic
of an advertisement is its memorability. These two aspects
of an ad increase the probability to induce some wanted
behaviours, for example the purchase of some product,
the choice of a specific brand, or the click on some spe-
cific web link. In the last case, it is crucial to make the
recipient curious about the subject referred by the URL.
The best way to realize in an ad both attitude induction
and memorability is the generation of surprise, generally
based on creative constraints.

In order to develop a strategy for surprise induction,
we considered an interesting property of pleasurable cre-
ative communication that was named by Rachel Giora as
the optimal innovation hypothesis(2003). According to
this assumption, when the novelty is in a complemen-
tary relation to salience (familiarity), it is “optimal” in the
sense that it has an aesthetics value and “induces the most
pleasing effect”.

Therefore the simultaneous presence of novelty and
familiarity makes the message potentially surprising, be-
cause this combination allows the recipient’s mind to os-
cillate between what is known and what is different from
usual. For this reasons, an advertising message must be
original but, at the same time, connected to what is famil-
iar (Pricken, 2002). Familiarity causes expectations, while
novelty violates them, and finally surprise arises.

Computational Creativity 2007

99

1.2 Familiar Expression Variation

With “familiar expression variation” we indicate an ex-
pression (sentence or phrase) that is obtained as a linguis-
tic change (e.g. substitution of a word, morphological or
phonetic variation, etc.) of an expression recognized as
familiar by recipients (e.g. selected by some collection of
proverbs, famous movie titles, etc.). In this work we lim-
ited the variation to word substitution.

Moreover, an ad has to own a semantic connection
with some concept of the target topic. At the same time,
it has to be semantically related with some emotion of a
prefixed valence (e.g. positive emotion asjoy or negative
emotion asfear) .

We combined all these constraints in a compatible way
with the optimal innovation hypothesis. The “innovation”
is provided by the semantic similarity with the target topic
and with the emotion, and the “optimality” is guaranteed
by the assonance (i.e. the old and the new word have to be
assonant, e.g. rhymed).

We considered in this process some recent works
in computational humor (e.g. (Stock and Strapparava,
2003)), in which incongruity theory is exploited to pro-
duce funny variations of given acronyms1. In this work
we extend this approach, focussing on the affective load of
lexicon for the variation production and generating auto-
matically typographical animations that are coherent with
the emotions we want to communicate.

The paper is structured as follows. In Section 2 we
introduce the resources used in the system, in particu-
lar (i) WORDNET-AFFECT, an extension of the WordNet
database in which some affective labels are assigned to
a number of synsets; (ii) an affective semantic similarity,
based on a Latent Semantic Analysis, which gives us an
indication of the affective weight of generic terms; (iii)
databases of familiar expressions and assonance tools; and
(iv) a kinetic typography scripting language used for the
final sentence animation. Section 3 describes the algo-
rithm to variate familiar expressions and Section 4 dis-
plays some examples. Conclusions and future works are
reported in Section 5.

2 Resources

2.1 Affective Semantic Similarity

All words can potentially convey affective meaning. Each
of them, even those more apparently neutral, can evoke
pleasant or painful experiences, because of their semantic
relation with emotional concepts. While some words have
emotional meaning with respect to the individual story, for
many others the affective power is part of the collective
imagination (e.g. words “mum”, “ghost”, “war” etc.).

We are interested in this second group, because their
affective meaning is part of common sense knowledge and
can be detected in the linguistic usage. For this reason,
we studied the use of words in textual productions, and
in particular their co-occurrences with the words in which
the affective meaning is explicit. As claimed by Ortony et

1As far as computational humor is concerned and in particu-
lar funny variations of existing expressions, it is worth mention-
ing the work on pun creation of Binsted and Ritchie (1997).

al. (Ortony et al., 1987), we have to distinguish between
words directly referring to emotional states (e.g. “fear”,
“cheerful”) and those having only an indirect reference
that depends on the context (e.g. words that indicate pos-
sible emotional causes as “killer” or emotional responses
as “cry”). We call the formerdirect affective wordsand the
latter indirect affective words(Strapparava et al., 2006).

In order to manage affective lexical meaning, we (i)
organized the direct affective words and synsets inside
WORDNET-AFFECT, an affective lexical resource based
on an extension of WORDNET, and (ii) implemented a
selection function (namedaffective weight) based on a se-
mantic similarity mechanism automatically acquired in an
unsupervised way from a large corpus of texts (100 mil-
lions of words), in order to individuate the indirect affec-
tive lexicon.

Applied to a concept (e.g. a WORDNET synset) and
an emotional category, this function returns a value rep-
resenting the semantic affinity with that emotion. In this
way it is possible to assign a value to the concept with
respect to each emotional category, and eventually select
the emotion with the highest value. Applied to a set of
concepts that are semantically similar, this function se-
lects subsets characterized by some given affective con-
straints (e.g. referring to a particular emotional category
or valence).

As we will see, we are able to focus selectively on
positive, negative, ambiguous or neutral types of emo-
tions. For example, given “difficulty” as input term, the
system suggests as related emotions:IDENTIFICATION,
NEGATIVE-CONCERN, AMBIGUOUS-EXPECTATION, AP-
ATHY . Moreover, given an input word (e.g. “university”)
and the indication of an emotional valence (e.g. positive),
the system suggests a set of related words through some
positive emotional category (e.g. “professor” “scholar-
ship” “achievement”) found through the emotionsEN-
THUSIASM, SYMPATHY, DEVOTION, ENCOURAGEMENT.

This fine-grained affective lexicon selection can open
up new possibilities in many applications that exploit ver-
bal communication of emotions. For example, (Valitutti
et al., 2005) exploited the semantic connection between a
generic word and an emotion for the generation of affec-
tive evaluative predicates and sentences.

WORDNET-AFFECT and the Emotional Categories.
WORDNET-AFFECT is an extension of the WordNet
database (Fellbaum, 1998), including a subset of synsets
suitable to represent affective concepts. Similarly to what
was done for domain labels (Magnini and Cavaglià, 2000),
one or more affective labels (a-labels) are assigned to
a number of WordNet synsets. In particular, the affec-
tive concepts representing an emotional state are indi-
viduated by synsets marked with the a-labelEMOTION.
There are also other a-labels for those concepts represent-
ing moods, situations eliciting emotions, or emotional re-
sponses. WORDNET-AFFECT is freely available for re-
search purpose athttp://wndomains.itc.it . See
(Strapparava and Valitutti, 2004) for a complete descrip-
tion of the resource.

We extended WORDNET-AFFECT with a set of ad-
ditional a-labels (i.e. theemotional categories), hierar-

Computational Creativity 2007

100

Synsets # Words # Senses
Nouns 280 539 564

Adjectives 342 601 951
Verbs 142 294 430

Adverbs 154 203 270
Total 918 1637 2215

Table 1: Number of elements in the emotional hierarchy.

chically organized, in order to specialize synsets with a-
label EMOTION. In a second stage, we introduced some
modifications, in order to distinguish synsets according to
emotional valence. We defined four additional a-labels:
POSITIVE, NEGATIVE, AMBIGUOUS, NEUTRAL. The first
one corresponds to “positive emotions”, defined as emo-
tional states characterized by the presence of positive
edonic signals (or pleasure). It includes synsets such as
joy#1 or enthusiasm#1 . Similarly theNEGATIVE a-
label identifies “negative emotions” characterized by neg-
ative edonic signals (or pain), for exampleanger#1 or
sadness#1 . Synsets representing affective states whose
valence depends on semantic context (e.g.surprise#1)
were marked with the tagAMBIGUOUS. Finally, synsets
referring to mental states that are generally considered af-
fective but are not characterized by valence, were marked
with the tagNEUTRAL.

Computing Lexical Affective Semantic Similarity.
There is an active research direction in the NLP field about
sentiment analysis and recognition of semantic orienta-
tion from texts (e.g. (Turney and Littman, 2003; Liu et al.,
2003; Mihalcea and Liu, 2006)). In our opinion, a crucial
issue is to have a mechanism for evaluating the semantic
similarity among generic terms and affective lexical con-
cepts. To this aim we estimated term similarity from a
large scale corpus. In particular we implemented a varia-
tion of Latent Semantic Analysis (LSA) in order to obtain
a vector representation for words, texts and synsets.

In LSA (Deerwester et al., 1990), second order rela-
tions among terms and documents of the corpus are cap-
tured by means of a dimensionality reduction operated by
a Singular Value Decomposition (SVD) on the term-by-
document matrix. For the experiments reported in this pa-
per, we run the SVD operation on the full British National
Corpus2.

SVD is a well-known operation in linear algebra,
which can be applied to any rectangular matrix in order to
find correlations among its rows and columns. SVD de-
composes the term-by-document matrixT into three ma-
trices T = UΣkVT whereΣk is the diagonalk × k
matrix containing thek singular values ofT, σ1 ≥ σ2 ≥
. . . ≥ σk, andU andV are column-orthogonal matri-
ces. When the three matrices are multiplied together the
original term-by-document matrix is re-composed. Typi-
cally we can choosek′ � k obtaining the approximation
T ' UΣk′VT . More specifically, in the experiments
for this paper we use the matrixT′ = UΣk′ , whose rows

2The British National Corpus is a very large (over 100 mil-
lion words) corpus of modern English, both spoken and written
(seehttp://www.hcu.ox.ac.uk/bnc/).

represent the term vectors in the reduced space, taking into
account the first 100 dimensions (i.e.k′ = 100).

LSA can be viewed as a way to overcome some of the
drawbacks of the standard vector space model (sparseness
and high dimensionality). In fact, the LSA similarity is
computed in a lower dimensional space, in which second-
order relations among terms and texts are exploited. The
similarity in the resulting vector space can be measured
with the standard cosine similarity. Note also that LSA
yields a vector space model that allows for ahomoge-
neousrepresentation (and hence comparison) of words,
word sets, sentences and texts.

For representing word sets and texts by means of a
LSA vector, we used a variation of thepseudo-document
methodology described in (Berry, 1992). This variation
takes into account also atf-idf weighting schema (see
(Gliozzo and Strapparava, 2005) for more details). In
practice, each document can be represented in the LSA
space by summing up the normalized LSA vectors of all
the terms contained in it. Also a synset in WORDNET

(and then an emotional category) can be represented in the
LSA space, performing the pseudo-document technique
on all the words contained in the synset. Thus it is pos-
sible to have a vectorial representation of each emotional
category in the LSA space (i.e. theemotional vectors), and
consequently we can compute a similarity measure among
terms and affective categories. We defined theaffective
weightas the similarity value between an emotional vec-
tor and an input term vector (e.g. we can check how a
generic term is similar to a given emotion).

For example, the noun “gift” is highly related to
the emotional categories:LOVE (with positive valence),
COMPASSION (with negative valence),SURPRISE(with
ambiguous valence), andINDIFFERENCE(with neutral va-
lence).

In summary, the vectorial representation in the La-
tent Semantic Space allows us to represent, in auniform
way, emotional categories, generic terms and concepts
(synsets), and eventually full sentences.

2.2 Database of Familiar Expressions

The base for the strategy of “familiar expression varia-
tion” is the availability of a set of expressions that are rec-
ognized as familiar by English speakers.

We considered three types of familiar expressions:
proverbs, movie titles, clich́es. We collected 1836
familiar expressions from the Web, organized in three
types: common use proverbs (628), famous movie titles
(290), and clich́es (918). Proverbs were retrieved in
some of many web sites in which they are grouped (e.g.
http://www.francesfarmersrevenge.com/
stuff/proverbs.htm or www.manythings.org
/proverbs). We considered only proverbs of common
use. In a similar way we collected clichés, that are
sentences whose overuse often makes them humorous
(e.g. home sweet home, I am playing my own game).
Finally, movie titles were selected from the Internet
Movie Database (www.imdb.com). In particular, we
considered the list of the best movies in all sorts of
categories based on votes from users.

Computational Creativity 2007

101

The list of familiar expressions is composed mostly of
sentences (in particular, proverbs and clichés), but part of
them are phrases (in particular, movie title list includes a
significant number of noun phrases)

2.3 Assonance Tool

To cope with this aspect we got and re-
organized the CMU pronouncing dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
with a suitable indexing. The CMU Pronouncing Dic-
tionary is a machine-readable pronunciation dictionary
for North American English that contains over 125,000
words and their transcriptions.

Its format is particularly useful for speech recogni-
tion and synthesis, as it has mappings from words to their
pronunciations in the given phoneme set. The current
phoneme set contains 39 phonemes; vowels may carry
lexical stress.

2.4 Kinetic Typography Scripting Language

Kinetic typography is the technology of text animation,
i.e. text that uses movement or other changes over time.
The advantage of kinetic typography consists in a further
communicative dimension, combining verbal and visual
communication, and providing opportunities to enrich the
expressiveness of static texts. According to (Lee et al.,
2002), kinetic typography can be used for three different
communicative goals: capturing and directing attention of
recipients, creating characters, and expressing emotions.
A possible way of animating a text is mimicking the typ-
ical movement of humans when they express the content
of the text (e.g. “Hi” with a jumping motion mimics ex-
aggerated body motion of humans when they are really
glad).

We explore the idea to have a link between lexical
semantics of texts (automatically discerned through NLP
techniques) and some kinetic properties exploited for ani-
mating the words. In this paper, we consider affective con-
notation of texts by exploiting the affective semantic sim-
ilarity introduced above. This holds particularly for “indi-
rect affective words” (Strapparava et al., 2006). For exam-
ple, these words may indicate possible emotional causes
(e.g. “monster”) or emotional responses (e.g. “cry”). Thus
kinetic typography allows us to make the indirect affective
meaning explicit in order to automatically augment the af-
fective expressiveness of texts.

A first step was the individuation of an appropriate
tool for the authoring and visualization of text animations.
In particular, we wanted to act in an environment that al-
lows us to realize animations in a very simple manner and
to represent them in an easily exportable format. Func-
tionalities for the automated composition of animations
were our specific concern. To this aim we considered the
Kinetic Typography Engine (KTE), a Java package devel-
oped at the Design School of Carnegie Mellon Univer-
sity (Lee et al., 2002). It allows us to create a potentially
wide range of animations. Taking this engine as a start-
ing point, we first realized a development environment
for the creation and the visualization of text animations.
Our model for the animation representation is a bit sim-

pler than the KTE model. The central assumption con-
sists of the representation of the animation as a compo-
sition of elementary animations (e.g. linear, sinusoidal or
exponential variation). In particular, we consider only one
operator for the identification of elementary animations
(K-BASE) and three composition operators: kinetic addi-
tion (K-ADD), kinetic concatenation (K-JOIN), and kinetic
loop (K-LOOP).

TheK-BASE operator selects an elementary animation
(namedelementary kinetic behavior) as a temporal vari-
ation of some kinetic property. Elementary kinetic be-
haviors correspond to a subset of dynamic variations im-
plemented in KTE, for example linear variation (linear),
sinusoidal variation (oscillate), and exponential variation
(exponential).

linear linear variation
oscillate sinusoidal variation

pulse impulse
jitter sort of “chaotic” vibration
curve parabolic variation

hop parabolic variation with small impulses at
the endpoints

hop-secondary derivative of hop, used as secondary effect
to simulate elastic movements

Table 2: Some elementary kinetic behaviors

The kinetic addition (K-ADD) of two animations with
the same start time is obtained by adding, for each kinetic
property of text, the corresponding dynamical variation
of each single animation. The kinetic concatenation (K-
JOIN) consists in the temporal shifting of the second ani-
mation, so that the ending time of the first is the starting
time of the second. The kinetic loop (K-LOOP) concate-
nates an animation with itself a fixed number of times. In
the development environment it is possible to freely ap-
ply these operators for the real time building of new an-
imations. Compositional structure of animations can be
represented in XML format and then easily exported. Fi-
nally, an interpreter allows us to generate in real time the
animation starting from its structural representation.

Figure 2: Jitteringanger

After building the development tool, we selected a set
of emotional categories and, for each of them, we created
the corresponding text animations.

In particular, we focused on five emotional categories:
joy, fear, surprise, anger, sadness (i.e. a subset of Ekman
emotions (Ekman, 1977)).

The kinetic animation to associate to a fixed emotion

Computational Creativity 2007

102

linear – red

linear – y

linear – font-size

jitter – y

jitter – x

linear – alpha

behavior – kinetic property

Time (ms)
10 210 410 1010510 1510 1530

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

Figure 1: Kinetic behavior description for “anger” emotion

can be realized imitating either emotional and physiolog-
ical responses (analogous motiontechnique), or tone of
voice. We consider only animations of the first type, i.e.
we represent each emotion with an animation that simu-
lates a particular emotional behavior. In particular,JOY is
represented with a sequence of hops,FEAR with palpita-
tions,ANGER with a strong tremble and blush,SURPRISE

with a sudden swelling of text, and finallySADNESSwith
text deflation and getting squashed. Thus we annotated
the corresponding emotional categories in WORDNET-
AFFECTwith these kinematic properties.

Figure 1 displays in detail the behavior of the anger
emotion, showing the time-dependent composition graph
of the basic animations. The string appears (1) and dis-
appears (8) with a linear variation of the alpha property
(that defines the transparency of a color and can be rep-
resented by a float value). The animation is contained
between these two intervals and its duration is 1500 ms.
The first component is a tiny random variation of the po-
sition (2) (3), represented by x and y kinetic properties,
with jitter behavior. The second component consists of
an expansion of the string (4) and a subsequent compres-
sion (5). The third component is given by a slow rise up
(6). The last component, before disappearing, is a color
change to red (7). The whole behavior is then described
and implemented using the scripting language introduced
above.

As it is difficult to enjoy the animations
on static paper, please visit the web page
http://tcc.itc.it/people/strapparava/affective-KT
where some downloadable short movies are available.

3 Algorithm

In this section, we describe the algorithm developed to
perform a creative variation of an existing expression.

1. Insertion of an input concept. The first step of the
procedure consists of the insertion of an input con-
cept. This is represented by one or more words, a
set of synonyms, or a WordNet synset. In the lat-
ter case, it is individuated through a word, the part
of speech (noun, adjective, verb, or adverb), and the
sense number, and it corresponds to a set of syn-
onyms. Using the pseudo-document representation
technique described above, the input word list is rep-
resented as a vector (named input-vector) in the LSA
vectorial space.

2. Generation of the target-list. A list of terms (named
target list) that are semantically connected (in the
LSA space) with the input concept is generated. This
target list represents a semantic domain that includes
the input concept.

3. Association of assonant words. For each word
of the target-list one or more possibleassonant
wordsare found. Then a list of word pairs (named
variation-pairs) is created. Each pair has atarget
word as first element and anassonant-wordas sec-
ond element. At this point, the list of variation-pairs
is filtered according to some constraints. The first
one is syntactic (target-word and assonant-word must
have the same part of speech). The second one is se-
mantic (assonant word must not be included in the
target-list), and its function is to maximize the prob-
ability to realize a semantic opposition between the
elements of a variation pair. Finally, to each varia-
tion pair is associated anemotion-label(representing

Computational Creativity 2007

103

the emotional category most semantically similar to
the assonant word) with the corresponding value of
affective weight. If a target word has more possi-
ble assonant words, we selected only that one having
higher value of affective weight.

4. Creative variation of familiar expressions. In this
step, the procedure gets as input a set of familiar ex-
pressions (in particular, proverbs and movie titles)
and, for each of them, generate all possible varia-
tions. If an expression includes a word that is an el-
ement of at least one of the variation-pairs, then that
word is substituted by the other element of the same
pair.

5. Ordering of familiar expressions. The list of var-
ied expressions is ordered according to the value of
affective weight associated to the assonant word. The
dimension of the input set of familiar expressions is
crucial because it is related to the probability of gen-
erating a satisfactory creative variation.

6. Text animation. Finally, the varied expression is an-
imated with kinetic typography technique. In partic-
ular, the assonant-word is animated according to the
underlying emotion to emphasize the affective con-
notation.

4 Examples

In this section we want to show some examples of the cre-
ative function developed in our work and how it is useful
for creating advertisements.

Simple creative variations. Using the affective weight
function, it is possible to select a variation according to
the valence (e.g. the substitution of the wordbad, detected
as negative, withglad, recognized as positive) or to some
wanted affective direction. In Table 3 there are three varia-
tion of a movie title, according to three different emotions,
to show that we can constrain the word substitution toward
a word semantically similar to the desired emotional cate-
gory.

Original Variation Category
Notting Hill NottingThrill Exhilaration

NottingStill Calmness
NottingChill Gladness

Table 3: Simple variation of a movie title

Humorous effects. Table 4 shows how word substitu-
tion may propagate the change of connotation at the level
of the entire expression, and may also produce humorous
effects. In particular, we observed that the semantic oppo-
sition, determined by switching affective polarity, gener-
ates another more complex semantic opposition at phrase
(or sentence) level. In a possible scenario in which the
creative user interacts with the system to generate creative

expressions, the human recognition of high level humor-
ous effects may be part of the creative interaction. The
system proposes a list of possible candidates and the user
makes the ultimate decision, selecting the creative varia-
tions that seem more meaningful3.

Original Variation Category
when all else
fails, read the
instructions

when all else
fails, dread the
instructions

Fear

children and fools
tell the truth

children and
fools repel the
truth

Repugnance

divide and rule divide andcool Coolness
a guilty con-
science feels
continual fear

a guilty con-
science feels
continualcheer

Cheerfulness

Table 4: Humorous variations

Advertising. In Table 5 there are some examples of au-
tomatically generated advertising messages. The creative
variation has a semantic connection with a target topic and
it is suitable for advertising purposes. In the first example,
the original wordpark is substituted by the workdark, that
have high semantic similarity with a target topic (clothes)
and has a negative affective weight. The global expression
communicates the idea that the colours for the new fash-
ion must be clear and the dark clothes are old fashioned.
The second example shows the substitution of the origi-
nal wordnight with the wordfright , that is semantically
similar to the target topiccrashand has a negative affec-
tive weight. The entire phrase can be used to warn young
drivers about alcohol related driving accidents.

Original Variation Category
Jurassic Park JurassicDark Gloom
Saturday Night
Fever

SaturdayFright
Fever

Fear

Table 5: Variations for advertising messages

5 Conclusions

Exploiting some state-of-the-art natural language process-
ing techniques, we described a system that produces cre-
ative variations of familiar expressions and animates them
accordingly to the affective content. The creative textual
variations are based on lexical semantics techniques such
as affective similarity, while the animation makes use of a
kinetic typography dynamic scripting language.

From an applied point of view, we believe that a thor-
ough environment for proposing solutions to advertising

3In future work we are interested to refine a computational
model that suggests the best semantic opposition orincongruity
for humorous effect generation. Some useful considerations
about the issue of incongruity can be found in (Ritchie, 1999;
Veale, 2004)

Computational Creativity 2007

104

professionals can be a practical development of this work,
for the moment leaving the last word to the human pro-
fessional. In the future, the potential of fully automatic
production will find a big opportunity if advertisements
are to be linked to an evolving context, such as incoming
news, or changing of location of the audience, until a full
user personalization of advertisements.

References

Berry, M. (1992). Large-scale sparse singular value com-
putations.International Journal of Supercomputer Ap-
plications, 6(1):13–49.

Binsted, K. and Ritchie, G. (1997). Computational rules
for punning riddles.Humor, 10(1).

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T., and Harshman, R. (1990). Indexing by latent se-
mantic analysis.Journal of the American Society for
Information Science, 41(6):391–407.

Ekman, P. (1977). Biological and cultural contributions to
body and facial movement. In Blacking, J., editor,An-
thropology of the Body, pages 34–84. Academic Press,
London.

Fellbaum, C. (1998). WordNet. An Electronic Lexical
Database. The MIT Press.

Giora, R. (2003).On Our Mind: Salience, Context and
Figurative Language. Oxford University Press, New
York.

Gliozzo, A. and Strapparava, C. (2005). Domains ker-
nels for text categorization. InProc. of the Ninth Con-
ference on Computational Natural Language Learning
(CoNLL-2005), Ann Arbor.

Lee, J., Forlizzi, J., and Hudson, S. (2002). The kinetic
typography engine: An extensible system for animat-
ing expressive text. InProc. of ACM UIST 2002 Con-
ference.

Liu, H., Lieberman, H., and Selker, T. (2003). A model of
textual affect sensing using real-world knowledge. In
Proc. of the Seventh International Conference on Intel-
ligent User Interfaces (IUI 2003), Miami.

Magnini, B. and Cavaglià, G. (2000). Integrating subject
field codes into wordnet. InProc. of the 2nd Interna-
tional Conference on Language Resources and Evalua-
tion (LREC2000), Athens, Greece.

Mihalcea, R. and Liu, H. (2006). A corpus-based ap-
proach to finding happiness. InProc. of Computational
approaches for analysis of weblogs, AAAI Spring Sym-
posium 2006, Stanford.

Ortony, A., Clore, G. L., and Foss, M. A. (1987). The psy-
chological foundations of the affective lexicon.Journal
of Personality and Social Psychology, 53:751–766.

Petty, R. and Wegener, D. (1998). Attitude change: Multi-
ple roles for persuasion variables. In Gilbert, D., Fiske,
S., and Lindzey, G., editors,The handbook of social
psychology, pages 323–390. McGraw-Hill, New York,
4th edition.

Pricken, M. (2002).Creative Advertising. Thames & Hud-
son.

Ritchie, G. (1999). Developing the incongruity-resolution
theory. InProceedings of the AISB Symposium on Cre-
ative Language: Stories and Humour, Edinburgh.

Stock, O. and Strapparava, C. (2003). Getting serious
about the development of computational humour. In
Proceedings of the 8th International Joint Conference
on Artificial Intelligence (IJCAI-03), Acapulco, Mex-
ico.

Strapparava, C. and Valitutti, A. (2004). WordNet-Affect:
an affective extension of WordNet. InProc. of 4th Inter-
national Conference on Language Resources and Eval-
uation (LREC 2004), Lisbon.

Strapparava, C., Valitutti, A., and Stock, O. (2006). The
affective weight of lexicon. InProceedings of the Fifth
International Conference on Language Resources and
Evaluation (LREC 2006), Genoa, Italy.

Turney, P. and Littman, M. (2003). Measuring praise and
criticism: Inference of semantic orientation from as-
sociation. ACM Transactions on Information Systems
(TOIS), 21(4):315–346.

Valitutti, A., Strapparava, C., and Stock, O. (2005). Lexi-
cal resources and semantic similarity for affective eval-
uative expressions generation. InProc. of the First In-
ternational Conference on Affective Computing & In-
telligent Interaction (ACII 2005), Beijing, China.

Veale, T. (2004). Incongruity in humor: Root-cause or
epiphenomenon?The International Journal of Humor,
17(4).

Computational Creativity 2007

105

Computational Creativity 2007

106

Sessions 5 & 6

Frameworks for Creativity

Computational Creativity 2007

107

Computational Creativity 2007

108

Algorithmic Information Theory and Novelty Generation

Simon McGregor
Centre for Research in Cognitive Science

University of Sussex, UK
sm66@sussex.ac.uk

Abstract

This paper discusses some of the possible contributions of
algorithmic information theory, and in particular the cen-
tral notion ofdata compression, to a theoretical exposition
of computational creativity and novelty generation. I note
that the formalised concepts of pattern and randomness
due to algorithmic information theory are relevant to com-
puter creativity, briefly discuss the role of compression
in machine learning theory and present a general model
for generative algorithms which turns out to be instanti-
ated by decompression in a lossy compression scheme. I
also investigate the concept of novelty using information-
theoretic tools and show that a purely “impersonal” formal
notion of novelty is inadequate; novelty must be defined
by reference to an observer with particular perceptual abil-
ities.

1 Compression, Randomness and Pattern

The intuitive concepts ofpattern and its converse,ran-
domness, are of interest to those in the field of computer
creativity. These concepts have been extensively explored
in statistical inference theory: clearly, anything which has
no pattern cannot be predicted; on the other hand, identi-
fying a nonrandom pattern in data should allow us to pre-
dict it better than chance in future. Perhaps surprisingly,
it turns out that the field of computer science known as
algorithmic information theoryhas direct application to
formalising the idea of randomness in observed data.

The concept ofalgorithmic entropyor Kolmogorovor
Kolmogorov-Chaitincomplexity is central to algorithmic
information theory. The Kolmogorov complexity of a bi-
nary string is defined simply as the length of the shortest
computer program which produces that string as an out-
put. Some strings arecompressible, i.e. there exists some
computer program shorter than the string itself which pro-
duces that string as an output. For instance, the first

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

100,000 digits in the binary expansion ofπ can be gener-
ated by a program far shorter than 100,000 bits. A string
consisting of the binary digit 1 repeated 1,000 times can be
generated by a program shorter than 1,000 bits. However,
it can be shown (Li and Vitanyi, 1997) that most strings
areincompressible, i.e. they cannot be generated by a pro-
gram shorter than themselves. Consequently, if you flip
a perfectly random coin 100,000 times, the likelihood is
that the sequence of heads and tails you obtain cannot be
described by a program shorter than 100,000 bits. In algo-
rithmic information theory a string is described as random
if and only if it is incompressible.

Note that randomness in algorithmic information the-
ory applies tostrings, and not to the physical processes
which generate those strings. A biased probabilistic ran-
dom process such as radioactive decay could produce a se-
quence of 1s and 0s in which 1s were extremely common
and 0s extremely rare; that sequence would be algorith-
mically nonrandom (because favouring 1s is a pattern) de-
spite the fact that it was the product of a random process.
Algorithmic randomness refers simply to the absence of
pattern in a string.

Despite the best attempts of mathematicians to date,
there are still some formal issues which restrict the use-
fulness of algorithmic entropy as an “objective” measure
of randomness. Firstly, algorithmic entropy is provably
uncomputable, so it cannot be used in practice. Secondly,
in principle its exact value is dependent on the arbitrary
reference machine on which programs are run, so that it
is “non-arbitrarily” well-defined only in the asymptotic
limit.

2 Lossy Compression

As mentioned above, most binary strings are incompress-
ible. This means that theoretically, a compression pro-
gram which allows objects to be reconstructed from their
compressed representations cannot on average turn its in-
puts into shorter strings! Compression algorithms such
as LZW1 take advantage of the fact that some inputs
(e.g. those containing many repeated substrings) are more
likely in practice than others; for the majority of possible
inputs (those not encountered in practice), the compressed
representation will be longer than the original.

1Or the other algorithms used by compression utilities such
as WinZip.

Computational Creativity 2007

109

To make a compression program useful, one needs a
decompressor(in practice, these two programs are usu-
ally bundled together). The decompressor takes the com-
pressed representation of a string as its input and outputs
the original string.

A lossy compressoris a program which destroys some
information about its input in order to be able to produce
(typically) shorter representations. For instance, the im-
age compression standard JPEG is a lossy compression
scheme. That is to say, when the output of a JPEG com-
pression program is run through a JPEG decompressor,
the result is typically not identical to the original input.

3 Generativity and Compression

Imagine a terminating computer program which is sup-
posed to produce objects in our generative domain of in-
terest (e.g. English poems, pictures of animals or rocka-
billy music). Due to the nature of digital computer pro-
grams, the objects generated must be encoded as binary
strings (e.g. some ASCII text, or a PNG image, or an MP3
music file). Now, if the same program produces one object
whenever it is run, and is capable of producing different
objects, in formal terms the program can be considered
as taking an input which determines its output. This con-
ceptualisation is general enough to cover programs which
operate in some random fashion (the random numbers can
be provided as input). It is also general enough to en-
compass a non-terminating program which generates an
infinite sequence of objects by changing its state: we can
always write a terminating program which takes a number
n as input and outputs the non-terminating program’snth
generated object.

This leads to a view in which a generative computer
model for a generative domain is seen as a programP

which takes an arbitrary binary string as input and outputs
a binary string encoding an object. Each bit of the input
can be interpreted as a choice point in the process which
generates the output. We’ll presume thatP is written in
such a way that it cannot produce an “illegal” output no
matter what the input is.

Let’s additionally assume that it is possible to write an
inverse programP ′, such thatP ′(P (X)) = X always.
The new program takes the encoding of an objectY and
outputs a binary stringX which can be fed intoP (if there
is such a string) to generateY . If there is no inputX
which generatesY underP , P ′ finds the closest objectY ∗

to Y which can be produced byP , and outputs a binary
stringX∗ which generatesY ∗ underP .

If its inputs are typically shorter than its outputs, the
programP ′ as just defined is a standardlossy compres-
sor program, and our generative modelP is just the cor-
respondingdecompressor. In other words, a successful
compression scheme which is computably decompress-
able yields a generative algorithm. Since optimal com-
pression effectively abstracts away any pattern in data, this
should not be surprising. The relation between lossy com-
pression and generativity was noted as early as 1994 in the
jokey paper Witten et al. (1994).

4 Learning and Compression

It is a well-known result in machine learning (Li and Vi-
tanyi, 1997) that the shortest program which can produce
observed data tends to generalise well to unseen data2.
This is the centuries-old principle ofOccam’s razor- the
simplest explanation is usually the best one. Any machine
learning algorithm which is meant to generalise to unseen
data from observed data must effectively perform some
sort of compression.

Hence, a generative algorithm which is required to
learn from its successes and failures can also be under-
stood in terms of compression and algorithmic informa-
tion theory. The most effective generalisation from past
experience will in general be the one which compresses
most, i.e. captures the pattern to the greatest possible ex-
tent.

5 Aesthetics and Compression

Unlike previous research, (e.g. Svangard and Nordin
(2004); Schmidhuber (1997)) this paper does not consider
the relation between compression and aesthetics. It fo-
cuses on learning, novelty and generativity, which are rel-
evant both in artistic and non-artistic (for instance, engi-
neering or mathematical) creative domains.

6 Novelty and Compression

6.1 The Problem of Novelty

Most theoretical accounts of creativity agree that creative
products must benovel. Put simply, a product is novel if
it is different from some set of already-observed things.
Depending on the purpose, this reference set may be de-
fined by what the originator has observed (what Boden
(2003) calls personal- or p- creativity), or by what the en-
tire historical community has observed (what Boden calls
historical- or h- creativity). But we need to be careful
here. “Different” does not merely mean non-identical. If I
change one word of A. S. Byatt’s “Possession”, the result-
ing product is not novel3 even though it is not identical to
any pre-existing object. It is not “different enough” from
prior works to qualify as “genuinely” novel.

That “different enough” is revealing: difference lies on
a continuum, with identical objects being zero-different
and other pairs of objects varying from hardly different
to extremely different. Consequently, new products ex-
hibit degrees of novelty, rather than falling into a binary
novel / non-novel categorisation. The degree of novelty of
a product depends on a (usually implicit) measure ofsimi-
larity to a (usually implicit) reference class of pre-existing
objects. For instance, in Saunders (2001), novelty is ap-
praised using an implicit measure of similarity based on
learning in unsupervised neural networks. In other words,
novelty is relative not only to what has been seen before
but also relative to how things are conceptually grouped
together. For any formal version of novelty which relies

2Provided that the unobserved data comes from the same dis-
tribution as the observed data and that the distribution is com-
putable.

3It is of course stilla novel.

Computational Creativity 2007

110

on similarity, it is necessary to specify what measure of
similarity is being used.

6.2 Compression

There is a natural, impersonal formal sense in which two
binary stringsX andY can be considered similar. Thein-
formation distance(Bennett et al., 1998) tells us how close
the algorithmic information in the two strings is. This dis-
tance, which is a metric up to an additive constant term, is
defined as the length of the shortest program which pro-
ducesY givenX as input and vice versa. In Bennett et al.
(1998), it is described as auniversal cognitive similarity
metric. Formally,

E1(X,Y) = max{K(X|Y),K(Y |X)}

whereK(X|Y) is the conditional Kolmogorov complex-
ity of X givenY (the length of the shortest progam which
producesX givenY as input).

Although Kolmogorov complexityper seis uncom-
putable, an approximation to information distance has
been successfully used in Cilibrasi and Vitanyi (2005) to
identify similarity between sections of English text, simi-
larity between DNA strings and similarity between musi-
cal melodies.

We could extend this formalism to give us measures of
how “objectively” novel a binary stringXn+1 is in com-
parison to previously known stringsX1 · · ·Xn. For in-
stance,

Nov1(Xn+1) = min{E1(Xn+1, X1), · · · , E1(Xn+1, Xn)}

is the information distance from the new string to the most
similar previously known string.

As we will see in the next section, however, the use
of this “objective” similarity measure would be at funda-
mental odds with the goals and methods of computational
creativity.

7 Tensions in “Objective” Novelty
Generation

By definition, if novelty were held to be algorithmic ran-
domness with respect to known previous examples, then
there could not be a compact algorithm which generates
maximum novelty. The reason for this is straightforward:
when a compact algorithm generates strings, those strings
are of a pattern with the other strings it generates.

Furthermore, if an algorithm learned from previous
examples what is good and what is bad, and used this in-
formation to generate better objects, that would also defeat
the end of producing “truly” novel objects. The very sim-
ilarity which exists between known good objects and dif-
ferentiates them from bad objects is a pattern which when
identified can only be used to produce new good objects
which are similar - in a precisely quantifiable sense - to
the known ones. Maximally novel objects can in principle
only be discovered using random search4 or by already

4Using a physical random number generator. The pseudoran-
dom number generators used in typical “stochastic” computer
programs do not have algorithmically random output.

having a database of highly different objects and simply
retrieving them from that database one by one.

7.1 Perceptual Novelty

The impersonal “objective” version of novelty described
in the previous section does not correspond to how novel
an object will seem to an intelligent observer. Two dif-
ferent clips of random audio white noise sound the same
to the human ear, even though in information theoretic
terms they are likely to be maximally different from one
another (there will be no common pattern to them). As a
consequence, a successful theory of creativity will proba-
bly need to be a theory of creativityrelative tosome ob-
server whose perceptual and conceptual capacities deter-
mine the effective novelty of creative products. We will
see shortly that a formal impersonal version of novelty
leads to direct contradictions which may be resolved by
a perceptually-based theory. For instance, it has been pro-
posed by Schmidhuber (2006) that perceptual novelty is
related to the degree to which a new stimulus is expected
to improve the observer’s predictive model (as his paper
observes, a successful predictive model must compress
historical data).

Does this mean that human creativity must rely on
non-algorithmic processes? Certainly not. What really
matters is the perception of novelty by an observer, rather
than the “objective” novelty of information theory. A
short program can in principle produce a sequence of ob-
jects which appear highly dissimilar to a human perceiver,
and a series of mutually random objects can appear highly
similar. In other words, endless apparent novelty could
be generated by a compact program by exploiting the lim-
itations of the perceiver’s ability to detect patterns. For
instance, a human being zooming into the Mandelbrot set
sees novelty for quite a while, because our visual appara-
tus is unable to pick up the simple algorithm which gener-
ates it.

8 Conclusion

The theoretical tools of algorithmic information theory are
valuable to researchers in the field of computer creativity,
not only because of their potential relevance to formalis-
ing aesthetics, but because they formalise the crucial con-
cepts ofpatternandrandomness. These concepts are cen-
tral to learning and computer generativity, and relevant to
evaluating the novelty of new generative products. Com-
pression deserves more prominence as an organising idea.
For instance, this paper has argued that all generative al-
gorithms can be seen as decompressors for a lossy com-
pression scheme. However, under the most general in-
formation theoretic measure of novelty, concise computer
programs (and presumably human beings) must always be
understood as generating patterns whichappearnovel to
a perceptually limited observer, rather than beingobjec-
tivelynovel in some observer-independent sense.

Computational Creativity 2007

111

Acknowledgements

I would like to thank Chris Thornton for helpful discus-
sion and encouragement; my supervisor Inman Harvey,
and an anonymous reviewer who pointed out some major
omissions in my references. This research was conducted
under a grant from the EPSRC.

References

Bennett, Gacs, Li, Vitanyi, and Zurek (1998). Information
distance.IEEETIT: IEEE Transactions on Information
Theory, 44.

Boden, M. (2003).The Creative Mind; Myths and Mech-
anisms. Routledge.

Cilibrasi, R. and Vitanyi, P. M. B. (2005). Clustering by
compression.Information Theory, IEEE Transactions
on, 51(4):1523–1545.

Li, M. and Vitanyi, P. M. B. (1997).An Introduction to
Kolmogorov Complexity and Its Applications. Springer-
Verlag, Berlin.

Saunders, R. (2001).Curious Design Agents and Arti-
ficial Creativity. PhD thesis, Faculty of Architecture,
University of Sydney.

Schmidhuber, J. (1997). Low-complexity art.Leonardo,
Journal of the International Society for the Arts, Sci-
ences, and Technology, 30(2):97–103.

Schmidhuber, J. (2006). Developmental robotics, optimal
artificial curiosity, creativity, music, and the fine arts.
Connection Science, 18(2):173–187.

Svangard, N. and Nordin, P. (2004). Automated aesthetic
selection of evolutionary art by distance based classi-
fication of genomes and phenomes using the universal
similarity metric. InApplications of Evolutionary Com-
puting, pages 447–456. Springer.

Witten, I. H., Bell, T. C., Moffat, A., Nevill-Manning,
C. G., Smith, T. C., and Thimbleby, H. (1994). Seman-
tic and generative models for lossy text compression.
The Computer Journal, 37(2):83–87.

Computational Creativity 2007

112

How Thinking Inside the Box can become Thinking Outside the Box

Chris Thornton
Department of Informatics,

University of Sussex,
Brighton,

BN1 9QH,
UK

c.thornton@sussex.ac.uk

Abstract
While it remains a central reference for work in com-
putational creativity, Boden’s exploration/transformation
model can be interpreted as having different meanings at
the application level. As a result, programmers devel-
oping creative systems may have difficulty in realising
the theory’s practical value. The paper develops a for-
malisation which recasts the key elements in quantitative
terms while reinterpreting the exploration/transformation
distinction as a continuum. This has the effect of making
the framework more amenable to practical application in
the system-building context.

1 Introduction
In Boden’s original model (Boden, 1990) creativity is seen
as taking two forms:1

• guided search in existing conceptual spaces (termed
exploration) and

• creation of new conceptual spaces (termed transfor-
mation).

For Boden, the second type is the more important, be-
ing the origin of ‘true originality’ (Boden, 2003, p 40) and
for many there is an echo here of the intuition that thinking
‘outside the box’ can be more creative than thinking ‘in-
side the box’.2 However, for those interested in the build-

1In Boden’s revision of the model (Boden, 1998, 2003), a
third form of creativity — combinational creativity — is identi-
fied. However, within the formalisation all exploratory creativity
is combinational and for present purposes the two processes are
therefore regarded as equivalent.

2Boden talks about the creative process mainly in terms of
conceptual spaces explored by humans (and computers) but the
model can be seen as covering search in any representational
system. Ritchie, for example, interprets Boden’s model in terms
of search in a space of generic artifacts. (Ritchie, Forthcoming).

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

ing of creative systems, the identification of these cate-
gories raises questions about what sort of guidance and
transformation will be most advantageous. The practi-
tioner may want to ask ‘is my system starting out with
the right conceptual spaces?’‘is search being guided in a
productive way?’ and ‘is the system generating the right
sort of transformations?’.

There may also be practical difficulties with the dis-
tinction between exploration and transformation. Since
transformation can be seen as search performed in a space
of conceptual spaces, it can be regarded as a form of ex-
ploration (Wiggins, 2001, Ritchie, 2006). Wiggins has
in fact taken the step of proving the formal equivalence
of transformation and exploration by showing that trans-
formation can always be viewed as meta-search. (Wig-
gins, 2006b, Wiggins, 2006a) The system-builder may
need some way of deciding when transformation should
really be treated as exploration, or vice versa.

One strategy is to treat Boden’s theory as strictly ex-
planatory and not expect it to provide any particular pro-
cessing model, or at least nothing more than the general
notion that creativity involves guided search in concep-
tual spaces.3 Another approach is to seek a formalisation
of the theory capable of meeting the needs of the systems
builder. This is the approach pursued here.

2 Concept duality
Boden’s observation that conceptual spaces must be gen-
eratively represented (Boden, 1990, p. 78) implies that
identifying a new concept in a conceptual space must in-
volve construction of the concept. This process must pre-
sumably make use of existing concepts. So exploration of
conceptual space must involve processes of concept con-
struction in which new concepts are constructed from ex-
isting concepts. But what are the possible forms of this
process? In what ways can concepts be combined to form
a new concept?

Two cases can be discerned. First, there is the case
where the sub-concepts are treated as instances. Second,
there is the case where they are treated as constituents.
The former type of construction is entailed in the construc-
tion of class-based, category-based and property-based
concepts. The latter is entailed in construction of function-

3This is the approach taken by Wiggins in his recent,
information-based work on composition (Wiggins, 2007).

Computational Creativity 2007

113

and relation-based concepts. For present purposes, con-
struction in which the components are treated as instances
will be termed categorical while construction in which
the components are treated as constituents will be termed
compositional.

UNIFORM

SOCKS TROUSERS JACKET CAP

GARMENT

SOCKS TROUSERS JACKET CAP

Categorical

construction

Compositional

construction

Figure 1: Concept-construction methods.

As an illustration of the distinction between cate-
gorical and compositional construction, consider Figure
1. This shows constructions for two clothing concepts:
GARMENT and UNIFORM. In the diagram, concepts
are represented as circles with primitive concepts be-
ing shaded. Three of these — SOCKS, TROUSERS
and JACKET — may be combined to form the GAR-
MENT concept. This is a categorical construction since
the sub-concepts are treated as instances. In contrast,
TROUSERS, JACKET and CAP may be combined to
form the concept UNIFORM (as in ‘MILITARY UNI-
FORM’). But here the construction is compositional since
the components are treated as constituents of a new whole.

Note how the arcs connect to the internal structure
of UNIFORM, reflecting compositionality while the arcs
connecting to GARMENT combine, reflecting the fact
that the concept is a class in which the components are al-
ternative instances. (This convention is followed through-
out.)

Whether a higher-order concept can be constructed
in a particular way depends on the concepts and — in
the case of compositional construction — the relations
that can be applied. The fact that a particular concept
can be constructed in one way from certain components
does not mean that it cannot also be constructed in the
other. Nor does it in any way limit the ways in which
the components can be used. The UNIFORM concept is

here shown in a compositional construction. But it could
also have been shown in a categorical construction, using
sub-concepts such as ARMY UNIFORM, POLICE UNI-
FORM and SCHOOL UNIFORM. And while the compo-
sitional construct makes use of the ‘and’ relation, applying
this relation to different components, or using a different
relation altogether, other constructs could be formed from
the same primitives.

3 The general form of conceptual
development

Being able to construct new concepts endows an agent
with the ability to ‘explore’ a particular conceptual uni-
verse. But what can we say about this universe? How big
is it? What is the structure? If the agent is solely capable
of categorical construction, only a finite number of new
concepts may be constructed and these must correspond
to the possible subsets of primitive concepts. If the agent
is capable of compositional construction, then there is the
possibility of an infinite expansion of concepts. But the
rate at which new concepts may be developed depends on
the relationships that may be applied.

As an illustration of the possibilities, consider Fig-
ure 2. This represents conceptual development from three
primitives (the shaded circles) using categorical construc-
tion, and compositional construction with two relation-
ships (labelled 1 and 2). As before, categorical construc-
tion is indicated using arcs which combine. But here com-
positional construction is indicated using arcs which con-
nect with a bar labelled with the relationship invoked.

Initially, there are just the three primitives. For every
way of grouping these, there is the potential for a categor-
ically constructed concept and two compositionally con-
structed concepts — one for each of the available two rela-
tions. These initial constructions generate concepts which
are first-order with respect to the primitives. For every
way of grouping the first-order concepts, the same situa-
tion applies, with the result being a layer of second-order
concepts. The number of potential constructs thus grows
multiplicatively, with each level containing concepts of
higher order.

But what is the maximum rate of growth? Initially,
there are just the primitive concepts themselves. Let k
represent the number of these. Each directly derived con-
cept must combine some of the primitives. So the number
of derivable concepts must be related to the 2k possible
subsets, but discounting the empty set and all singleton
sets.4 That is to say, the number of subsets on which new
concepts can be constructed must be

2k − (k + 1)

Each subset provides the basis for one categorical con-
struct and, for each available relationship, one composi-
tional construct. Letting r represent the number of acces-
sible relationships, the total number of concepts which can
be directly constructed is thus

(2k − (k + 1))(r + 1)
4Not discounting them would allow construction of empty

and duplicate concepts.

Computational Creativity 2007

114

...1 1

1

2

1

2

2 2...

Categorical

construction

Compositional

construction

primitive

concepts

1st order

concepts

2nd order

concepts

Figure 2: Potential concept constructions using 3 primitives and 2 relations.

Applying categorical and compositional construction
to the first layer of derived concepts generates a second
layer of concepts, and so on. The number of concepts
which can be constructed at any level of the hierarchy thus
depends on the number at the level below. This allows the
rate of growth to be defined recursively. The number of
concepts which can be constructed at any level i of the
hierarchy may be determined using

k0 = the number of primitive concepts
ki+1 = (2ki − (ki + 1))(r + 1)

Considering this growth formula, there can be no
doubt that the number of possible constructions grows ex-
ponentially fast as development progresses. The number
of constructions at a specific level of the hierarchy is mul-
tiplicatively related to the number at the level below both
through the explicit exponentiation of k and through the
multiplication with r. The result is that an unmanageably
large number of potential constructions is reached very
rapidly regardless of the initial base. For example, assum-
ing a base of just three primitives and a single relationship,
there are

• 8 potential concepts at level 1,

• 494 at level 2 and

• more than 10149 at level 3.

As a general rule, exhaustive expansion of a concept
hierarchy beyond two levels of construction is intractable.

4 The Complex Extension
Examination of the mechanisms of concept construction
reveals how conceptual spaces must be explored and an-
swers some of the questions raised in the application of

Boden’s model. Exploration of conceptual space must
proceed on the basis of categorical or compositional
concept-construction. For any conceptual space, there
must be an initial set of primitive concepts and, if compo-
sitional construction is used, a set of applicable relations
too. In the case where only categorical construction is ap-
plied, the space is finite. If compositional construction
is also available there is the potential for infinite devel-
opment of the space. However, in this case, the rate of
growth in any unrestricted process of construction is such
that exploration of the space beyond the low-order con-
cepts (i.e., 2nd or 3rd order) is prohibitively costly.

Understanding the general form of conceptual space
exploration, however, does not answer the critical ques-
tions about which forms of exploration are likely to be
most advantageous. The system-builder needs to know
something about the general principles of heuristic guid-
ance. This is the ‘nuts-and-bolts’ end of the evaluation
problem, of course — the general problem of how to dis-
criminate concepts which have genuine value.

While evaluation does not figure in Boden’s core
model (except in the sense that transformation is deemed
to lead to more ‘radically’ creative conceptualisation) it
does figure considerably in her commentary and illustra-
tive examples. A notion which seems particularly signif-
icant there is that of explanatory value, i.e., the ability of
one concept to account for, generalise or explain several
others. This is to the good from the perspective of for-
malisation since generality has a well-defined meaning:
the generality of a concept is by definition, the number of
cases or instances which it generalises.

We can express the notion as

g(c) = |e(c)| (1)

where g(c) is the generality of concept c and e(c) is its

Computational Creativity 2007

115

extension, i.e., its set of instances.
Can we incorporate into this formalisation a notion of

explanatory value based on this equation? To do so we
will need a mechanism for computing the extension of any
concept. In the simple case of a categorical construct built
directly on primitives, there is no difficulty. The extension
is just the set of primitive concepts used in the construc-
tion. But how to compute the extension in the case where
the concept is not defined directly in terms of primitives,
or in the case where the construct is compositional?

In general, the instances of a concept are its possi-
ble manifestations and each distinct way of constructing
a concept offers an alternative manifestation. Thus, alter-
native forms of construction are alternative forms of in-
stantiation. Instantiation recapitulates construction. We
can compute the extension of any concept, then, by eval-
uating the set of ways in which it can be constructed from
the relevant primitives.

Illustrating the general idea, Figure 3 shows a concept
hierarchy whose highest-level concept c is categorically
constructed in terms of two compositional concepts which
themselves are categorically constructed in terms of prim-
itives. The extension of c contains its possible manifesta-
tions and these are identical to its possible constructions
(as shown in the lower part of the figure).

E(c, S)

a b c d

e f g i

j k l m

n o p

h

S = {n,o,p,k,l,m,g,h,c}

S* = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p . . . }

Figure 3: Derivation of extension.

There is a complication however since two forms of
extension can be differentiated. On the one hand we have
possible forms of construction made in terms of existing
concepts of the space. On the other we have possible
forms of construction made in terms of potential concepts
of the space. In Figure 3 the set S is defined as containing
all existing concepts of the space while S∗ is defined as

containing all potential concepts. Possible forms of con-
struction for c in terms of already constructed concepts is
therefore notated as

E(c, S)

with E being used instead of e to indicate the instances
are conceptual structures rather than atomic entities.

In any conceptual space, the set of developed concepts
must be a subset of the set of potential concepts. Thus

S ⊂ S∗
and by the same token

E(c, S) ⊂ E(c, S∗)

5 Full-house illustration
Where a single concept is constructed both categorically
and compositionally, we have one extension for each con-
struct. But though the contents must differ, the size of the
extension (and by implication the generality of the con-
cept) must be identical if all concepts of the space are
realised. To understand why, consider Figure 4. This il-
lustrates compositional and categorical construction of the
FULL HOUSE poker concept, whose extension we know
to contain exactly 156 cases (because there are exactly 156
instances of a five-card hand meeting the definition of ‘full
house’).

The primitive concepts in this example represent spe-
cific cards, with 1d = ‘ace of diamonds’, 2h = ‘two of
hearts’ etc. Concept construction invokes one relation-
ship and this is simple conjunction (shown here as ‘&’).
Possible categorical concepts at the first level are sub-
sets of cards and these include the suit concepts HEART,
SPADE, CLUB and DIAMOND. Compositional concepts
are conjuncts of cards and these include all instances of
pairs (e.g., 1d & 1c), three-of-a-kind, etc.

At the second level of development, there is the poten-
tial for categorically constructed PAIR and THREE OF A
KIND concepts. There is also the potential for composi-
tional constructs combining instances of both PAIR and
THREE OF A KIND.

Finally, at the third level of development, there is the
potential for both a categorical and a compositional FULL
HOUSE construct, with the latter combining the second-
level PAIR and THREE OF A KIND.

Although it cannot be determined from the diagram, it
should be clear that the complex extension of this concept
will contain the same number of cases whether it is cal-
culated from the categorical construct or from the compo-
sitional construct. The situation with the categorical con-
struct is straightforward. It utilises 156 components, each
one of which corresponds to a unique full-house hand.
The compositional construct, on the other hand, is built
from just two categorical constructs but the possible con-
structions for these combine to produce the same overall
total.

6 Hill-climbing in the generality landscape
Conceptual space development is subject to ‘guidance’
favouring explanatory value just in case it shows a pref-

Computational Creativity 2007

116

1s 1d 1h 1c 3s 3d 3h 3c. . . 9s 9d 9h 9c. . .

 SPADE

. . .

One primitive concept for each card

One relationship (`and’)
Compositional v. categorical

construction of FULL HOUSE concept

 1d & 1c 9s, 9h & 9c 3s & 3h

 PAIR

 3d, 3h & 3c

 THREE OF A KIND

 CLUB

FULL HOUSE

. . .

 1d,1c, 3d, 3h & 3c 3s, 3h, 9s, 9h & 9c

 FULL HOUSE

. . .

. . .

Figure 4: Dual developmental trajectories leading to FULL HOUSE.

erence for concepts of greater generality. If we envisage
a conceptual space as a landscape of generality levels, we
can take this to imply that the process is essentially a form
of hill-climbing search. Figure 5 illustrates the point. Tak-
ing the more darkly filled circles to represent concepts of
higher generality, explanation-oriented conceptualisation
should construct concept c before a, b, or d because it
has a higher level of generality. An operational definition
of Boden’s explanation-oriented exploration is thus that it
is hill-climbing search carried out in a concept-generality
landscape. But where does this leave the process of trans-
formation? Where does the creation of new conceptual
spaces fit in?

a b c d

Figure 5: Explanation-oriented conceptualisation must
hill-climb in the generality landscape.

Recall that generatively-represented conceptual
spaces can only be explored through concept construction
and that the components used in this process are existing
concepts. On this basis any newly constructed concep-
tual space must exist within an overarching conceptual
universe.5 A conceptual space then forms a subspace
in an enclosing conceptual universe. But taking into

5Wiggins (2006b) draws the same conclusion on formal
grounds.

account Boden’s point that the concepts in a conceptual
space are connected through explanatory content, we
can refine the definition and say that a conceptual space
must comprise a subset of concepts whose extensional
properties overlap.

In terms of the formalisation, then, transformation
may be seen as any conceptual development which has the
effect of creating a set of concepts with overlapping exten-
sional content. On this basis, all conceptual development
involves exploration but only some has transformational
impact. The separateness and significance of transforma-
tion is thus upheld within the formalisation. But the link
with exploration is more clearly delineated.

The general effect of this aspect of the formalisation
is to re-cast Boden’s all-or-nothing distinction between
exploration and transformation as a continuum. But this
seems not to disrupt the main content of the theory in any
serious way. Indeed, some commentators have argued that
an exploration/transformation continuum might be prefer-
able (cf. Treisman, 1994, Weisberg, 1994), while others
have made proposals that implicitly assume its existence
(cf. Bundy, 1994, Koestler, 1964). There is also some
cause for thinking that a continuum may be more compat-
ible with psychological observations of creative activity
(cf. Ram et al. 1995, Perkins, 1981)

7 Transformation distinctions
Viewing transformation as a type of exploration allows
some sub-classifications of the process to be introduced.
The transformation process is defined as being any devel-
opment which has the effect of creating a set of concepts
with overlapping extensional properties. But, in practice,
this might mean two different things. It could mean the
construction of the required concepts or it might just mean
the enhancement of their apparent generality, since this
will in any case have the affect of making construction
more probable. There is a distinction to be made, then,
between transformation which actuates a set of new con-

Computational Creativity 2007

117

cepts and transformation which merely helps to potentiate
them by enhancing their apparent generality.

Further to this, there are two ways in which potenti-
ating transformation may occur. On the one hand, there
is the simple case where the constructed concepts are the
potentiated concepts. On the other, there is the case where
the potentiated concepts are in a different part of the hi-
erarchy altogether. These two forms of the process are
tentatively termed ‘direct’ and ‘indirect’.

An an illustration of direct transformation, consider
the example of Figure 6. This sketches the creative pro-
cess underlying the innovation of the ‘reality-TV’ con-
cept. This has been seen as a novel combination of me-
dia genres such as the soap opera, the game show and
the human-interest documentary.6 The diagram reflects
this, showing the REALITY-TV concept as a composi-
tional construct using the GAME SHOW, SOAP OPERA
and HUMAN DOCUMENTARY concepts.

GAME

SHOW SOAP

OPERA
HUMAN

DOCUMENTARY

REALITY-TV

CASTAWAYBIG

BROTHER

WIFE

SWAP

I‘M A

CELEBRITY

FAKING IT

REALITY-TV

Figure 6: Illustration of direct transformation.

Prior to the compositional construction of REALITY-
TV, concepts which might figure in its categorical con-
struction (such as BIG BROTHER and CASTAWAY) are
assumed to be unrealised and to have negligible gener-
ality. But once construction is complete, their general-
ity is increased. All concepts within the category expand
their extensions, producing an increase in generality. The
compositional construction therefore generates potentiat-
ing transformation. Intuitively, the innovation of REAL-
ITY TV has value due to the fertility of the concept. In
terms of the model, it has value due to its potentiating,
transformational impact.

For a case of indirect transformation, see Figure
7. This features concepts relating to performances of
the ‘crossover’ jazz pianist Jamie Cullum. Cullum is
widely praised for his lively and imaginative improvisa-
tions which may involve use of pianos and other stage
equipment (not to mention people) as percussive instru-
ments. During intervals between passages of conventional
keyboard wizardry, Cullum may engage in unconventional
percussive activity, e.g., drumming on the music stand,
banging the lid of the piano up and down and head-butting
the microphone.

Figure 7 envisages Cullum’s mould-breaking activi-
ties in terms of potentiating transformation. But unlike
the previous case, the transformation here is indirect —
the constructed and potentiated concepts being well sep-
arated. The compositional construct in the bottom-left

6The confrontation-prompting chat show, such as Jerry
Springer, is another plausible constituent.

POP

GIRLBANDEMO

GOSPEL JAZZ SWING

TRAD MOD

PERF#1 PERF#2PERF#3

PIANO

PIANO

PLAYINGPIANO DRUMMING

INSTRUMENTATION

ARRANGEMENT

INSTRUMENTATION

POP

GIRLBANDEMO

GOSPEL

PERF#3

PIANO DRUMMING

INSTRUMENTATION

GOSP

TRAD

MMING

Old styles New styles

Figure 7: Illustration of indirect transformation.

corner represents the combination of PIANO and DRUM-
MING, i.e., it represents the idea of using a piano as a
percussive instrument. Initially, this concept and all other
concepts in the shaded area are unrealised. (The situation
might correspond to an early stage in Cullum’s career.)
However, all concepts outside the shaded area are in ex-
istence and there is a well defined subspace of 4th and
5th-order concepts representing his early styles of perfor-
mance (e.g. JAZZ and SWING).

With the innovation of the PIANO+DRUMMING
composition, there is an immediate impact on the gener-
ality of concepts which trace their construction through
this construct. Assuming DRUMMING has a variety of
instantiations in terms of existing concepts, the generality
of all these potential concepts is increased. The innovation
of the PIANO+DRUMMING concept thus has a potenti-
ating transformational effect, enhancing the generality of
a set of new 4th nd 5th-order concepts (GOSPEL, EMO,
POP etc.). In performance terms, the innovation opens up
a whole space of performance variation involving combi-
nation of novel percussive activity with previous unvisited
musical territory.

8 Summary
A formalisation of Boden’s creativity model has been put
forward which aims to answer the type of questions which
can arise in applications work while at the same time stay-
ing true to the original account. Observations about basic
mechanisms of concept construction were used to derive
a mathematical model of conceptual development. This
was extended so as to ground the notion of explanatory
value and allow explanation-oriented creative conceptual-
isation to be understood as hill-climbing search. On the
assumption of conceptual spaces being collections of con-
cepts with overlapping extensional properties, transforma-
tion was interpreted to be any exploratory conceptualisa-
tion serving to create or accentuate such a set of concepts.

Computational Creativity 2007

118

Several sub-classifications of the process were then distin-
guished. i.e., actuating versus potentiation transformation,
direct versus indirect transformation.

An immediately apparent limitation of the formalisa-
tion is the restricted notion of value brought to bear. The
only way in which creativity can be guided in the formal-
isation is through the generality measure. Therefore the
only form of evaluation which is accommodated is that of
explanatory power. While this may be appropriate in the
context of scientific or intellectual creativity, it is presum-
ably less relevant in other areas. Extending the formali-
sation so as to deal better with non-explanatory types of
value is thus an important goal for future work.

A possible approach to the problem would be to look
at the degree to which miscellaneous types of value can
be effectively ‘inherited’ via the generality criterion. Re-
call that explanatory value is determined (for present pur-
poses) in terms of extension size, i.e., its coverage of other
concepts. And since these other concepts may themselves
have any type of value, the valuation of the constructed
concept measured purely in terms of coverage of sub-
concepts must reflect the types of value which those sub-
concepts have. So evaluation in terms of coverage might,
under certain circumstances, implicitly support evaluation
of a non-explanatory property.

For example, consider the cook who first discov-
ered that sausages and onions are a good food combina-
tion. The artifact created is ‘sausages & onions’ and this
presumably has elements of practical value (it satisfies
hunger), associative value (it smells nice) and perhaps aes-
thetic value too (it looks nice). To the extent that these el-
ements of value can be understood as originating in types
of value associated with the components — sausages and
onions treated independently — a generality-based model
of evaluation might suffice.

However, while this approach may deal satisfactorily
with inherited components of value, there is still the prob-
lem of accounting for that element of value attributable
to the construction itself. Regarding this issue the most
promising avenue may be to extend the formalisation so as
to incorporate notions of conceptual blending (Fauconnier
and Turner, 2005, Pereira and Cardoso, 2002) or combi-
natorial creativity (Butnariu and Veale, 2006, Veale and
O’Donogue, 2000).

References
Boden, M. (1990). The Creative Mind: Myths and Mech-

anisms. London: Weidenfeld and Niicolson.

Boden, M. (1998). Creativity and artificial intelligence.
Artificial Intelligence, 103 (pp. 347-356). 1-2.

Boden, M. (2003). The Creative Mind: Myths and Mech-
anisms (2nd edition). London: Weidenfeld and Ni-
icolson.

Bundy, A. (1994). What is the difference between real
creativity and mere novelty?. Behavioral and Brain
Sciences, 17, No. 3 (pp. 533-534).

Butnariu, C. and Veale, T. (2006). Lexical combinatorial

creativity with gastronaut. Proceedings of the Com-
putational Creativity Workshop, ECAI 2006.

Fauconnier, G. and Turner, M. (2005). The Way We
Think: Conceptual Blending and the Mind’s Hidden
Complexities. Basic Books.

Koestler, A. (1964). The Act of Creation. London:
Hutchinson.

Pereira, F. and Cardoso, A. (2002). Conceptual blending
and the quest for the holy creative process. Proceed-
ings of the 2nd Workshop on Creative Systems: Ap-
proaches to Creativity in AI and Cognitive Science,
ECAI 2002, Lyon Frane.

Perkins, D. (1981). The Mind’s Best Work. Cambridge,
Mass.: Harvard University Press.

Ram, A., Wills, L., Domeshek, E., Neressian, N. and
Kolodner, J. (1995). Understanding the creative
mind: a review of margaret boden’s ‘creative mind’.
Artificial Intelligence, No. 79 (pp. 111-128).

Ritchie, G. (2006). The transformational creativity hy-
pothesis. New Generation Computing, 24 (pp. 241-
266).

Ritchie, G. (Forthcoming). Some empirical criteria for
attributing creativity to a computer. Minds and Ma-
chines.

Treisman, M. (1994). Creativity: myths? mechanisms?.
Behavioral and Brain Sciences, 17, No. 3 (p. 554).

Veale, T. and O’Donogue, D. (2000). In S. Coulson and
T. Oakley (Eds.), Cognitive Linguistics (special issue
on Conceptual Blending), 11 (pp. 3-4).

Weisberg, R. (1994). The creative mind versus the cre-
ative computer. Behavioral and Brain Sciences, 17,
No. 3 (pp. 555-557).

Wiggins, G. (2001). Towards a more precise charac-
terisation of creativity in AI. Proceedings of the IC-
CBR 2001 Workshop on Creative Systems. Vancou-
ver, British Columbia.

Wiggins, G. (2006a). A preliminary framework for de-
scription, analysis and comparison of creative sys-
tems. Knowledge-Based Systems (pp. xxx-xxx). El-
sevier B.V.

Wiggins, G. (2006b). Searching for computational cre-
ativity. New Generation Computing, 24 (pp. 209-
222). Ohmsha, Ltd and Springer.

Wiggins, G. (2007). The Components of a Creative Sys-
tem: The Architecture of a Computer Composer.

Computational Creativity 2007

119

Computational Creativity 2007

120

MINIMAL CREATIVITY, EVALUATION AND FRACTAL PATTERN
DISCRIMINATION

Jon Bird
Creative Systems Lab
University of Sussex

Brighton, BN1 9QG, UK
jonba@sussex.ac.uk

Dustin Stokes
Centre for Research in Cognitive Science

University of Sussex
Brighton, BN1 9QG, UK

d.stokes@sussex.ac.uk

Abstract
Evaluation is considered to be an important component of
any creative process. This paper explores how evaluation
can be incorporated into our minimal model of creativ-
ity, which we have been developing using a combination
of conceptual analysis and evolutionary robotics. Specifi-
cally, we consider how to extend our approach so that the
robots themselves can evaluate mark patterns that they, or
other robots, have made on the floor of their environment.

Evaluation can, we suggest, be distinguished into a de-
scriptive and a merit assignment component. To evaluate
an object or event F is, (a) to discriminate some feature of
F and (b) to assign some merit or de-merit to that feature
of F . Component (a) is descriptive and (b) is what would
more traditionally be called ‘evaluative.’

In simulation, our robots discriminate fractal from ran-
dom patterns and demonstrate this by stopping on target
regions of the arena floor that are covered with a fractal
texture. We argue that in so doing they perform the de-
scriptive component of evaluation. However, it is debat-
able whether the robots are performing the second, merit-
assignment component of evaluation. Currently, the dis-
crimination mechanism is hard-wired and does not de-
velop during an agent’s lifetime. In future experiments
we will investigate how to artificially evolve agents that
perform what might be described as ‘minimal evaluation’
by attempting to incorporate a preference element.

Keywords: Minimal creativity, evolutionary robotics,
evaluation, fractal pattern discrimination

1 Introduction
A creative process, one might argue, involves evaluation.
Without the second, you don’t get the first. Consider
Harold Cohen’s AARON drawing system, which has now
been generating images for more than 30 years (McCor-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

duck, 1991). The computational structure of AARON has
changed over the years. These details are theoretically in-
teresting, but set them to one side for the moment. No
matter the computation involved, and no matter the status
of the artificial agency of AARON, the following is clear.
Cohen, in selecting the images to display and eventually
sell, must evaluate those images. He selects the ones that
he prefers, and these images are the ones that you and I
will see in a gallery. This is evaluation if anything is. And
without it, one might say, you don’t have a creative pro-
cess. In fact, this may be the reason that one hesitates to
call AARON creative: without Cohen, there is no evalua-
tion. Indeed, Cohen makes the same concession (Cohen,
1999). This may motivate one to take evaluation to be a
necessary condition for creative processes.

We are sympathetic to this general suggestion. And
we are willing to take it seriously enough to incorporate
it into our minimal approach to modelling creativity and
to see what new results it may engender. Our ultimate
goal is to evolve artificial agents which behave in, at least
minimally, creative ways. Our methodology is also min-
imal, both in terms of conceptual assumptions, and the
constraints we place on the robot controllers.

2 Minimal Modelling and Creativity
To this point, our conceptual assumptions about creativ-
ity have been sparse. First, we propose that creative pro-
cesses require some degree of agency. And agency in-
volves autonomy. We understand autonomy very broadly:
it includes any behaviour not strictly imposed by a pro-
grammer or designer. This ‘no strings attached’ agency
is weaker than a rich philosophical notion; it does not re-
quire deliberation or cognition. Thus a remote controlled
robot would not be an agent in our sense, while an individ-
ual agent in an artificial life simulation would be. Second,
we suggest that creative processes involve novelty. We
follow Boden (2004) in rejecting the assumption that only
historical novelty is theoretically interesting. Instead, one
can acknowledge relative novelty by specifying different
reference points. We are interested in two types of rela-
tive novelty. Some behaviour is population-relative novel
for some agent A just in case that behaviour is novel rel-
ative to all of the agents in a population of which A is
a member. And a behaviour is individual-relative novel
for some agent A just in case it is novel relative to the

Computational Creativity 2007

121

behavioural history of A. This provides a great deal of
flexibility in how we understand novelty. And of course,
as the richness of the creativity in question goes up, so
does the novelty, perhaps moving towards something like
historical novelty. We thus propose an agency and a nov-
elty condition for minimally creative processes (Bird and
Stokes, 2006a,b; Bird et al., 2007).

To meet the ‘no strings attached’ agency condition our
initial model consists of a simulated robot, situated in a
walled arena environment, whose behaviour is solely de-
termined by its sensory motor activity. The simulation is
based on a Khepera robot with 6 IR sensors, a floor sen-
sor that can detect lines directly below the robot and a
pen that can be raised and lowered. Given the difficulty
of hand designing robot-environment interactions we em-
ploy an evolutionary robotics approach to designing the
artificial neural network that controls the behaviour of the
robot. The fitness function explicitly rewards (a) corre-
lated changes in the the state of the line sensor (‘on to off’
and ‘off to on’) and the pen (‘up to down’ and ‘down to
up’), and (b) marks made over a large area of the arena
floor. It also implicitly penalises robots that crash into
walls. This methodology also enables us to minimise
any implicit or explicit biases we have about how cre-
ativity should be modelled as well as having the poten-
tial to generate models that exhibit unpredictable, and po-
tentially novel behaviour. Our initial results demonstrate
that we can evolve simulated robots that meet our minimal
agency and population-relative novelty conditions (Bird
et al., 2007).

3 Missing Evaluation
We’ve encountered many sceptics in presenting this work
over the past year or two. The sceptic will often say some-
thing like the following. “You’ve got agents that perform
reactive behaviours, some of them novel in your speci-
fied sense, but there is no space for these agents to make
choices, to judge what they are doing, to evaluate. And
this is what’s missing: no evaluation, no creative process.
So call the behaviours ‘minimally creative’ if you like, but
they are too minimal to connect with rich creativity in any
interesting way.” As we said at the outset, we are sympa-
thetic to this general line of criticism. It needs, however,
to be separated into distinct criticisms, some of which we
will address here, some of which we hope to address later
in our research.

1. Non-evaluative processing worry
This is the issue we are most concerned with at
present. For agents to act creatively, they must be
performing some kind of evaluation. The agent must
be choosing among features or stimuli in its envi-
ronment, where these choices inform (and indeed
may be derived from) their behavioural activity. The
mark-making behaviour of our agents lacks this fea-
ture. Their behaviours are mere reactions to the
arena boundaries and previous mark-making in the
arena, constrained by their own sensory motor mor-
phologies and, from an evolutionary perspective, the
performance of previous agents in that environment.
There is, it seems, no evaluation by the individual

robots of their mark-making activity.

2. Myopic worry
A related worry concerns a feature of the sensory
motor morphology of the agents we are using. As
a symptom of their physical structure, our simulated
mark-making agents can only see marks on the floor
below them in a 2mm by 2mm area. There is thus no
sense in which the agent can achieve a global per-
spective on the marks it is making. There is not,
as there is usually for a human artist, an opportu-
nity to ‘stand back’ and consider the overall pat-
tern. This underwrites the non-evaluative processing
worry, since this myopic perspective seriously limits
prospects for evaluation.

3. No-stopping worry
Our agents have no stopping mechanism. That is,
there is no point where the agent will complete the
marks, no analogue to the artist who happily steps
back and says to herself ‘It’s finished!’. Our agents
may stop, but any termination of mark-making is in-
dependent of the patterns made by the marks. This,
in the theoretical context of creativity, is a problem.

4. Aesthetic value worry
A final worry concerns the results of the agents’
behaviours rather than the behaviours themselves.
Some members of our research team would ulti-
mately like to see some robot drawings which can
be exhibited in a gallery. Controversies about aes-
thetic value and definitions of art to one side, dis-
playing works in a gallery generally requires that the
works possess some aesthetic merit by one criterion
or other. Our results may be interesting, provided an
observer has enough information about the artificial
agency that generated them. But on their own, it is
debatable whether they have any aesthetic interest.
The challenge, then, is to achieve some aesthetically
interesting results, while maintaining our theoretical
stance towards creativity. In other words, we want
our robots to create something aesthetically valuable,
while minimising our influence over how they do it.
So far, we fall short of this goal.

4 A Proposed Solution: The Fractal
Framework

We think one solution to these various worries lies in the
use of fractals. In simple terms, we intend to endow our
agents with a capacity for discriminating fractal patterns,
and a preference of sorts for completing such patterns.
This is a broad enough constraint on our agents to allow,
as it were, creative freedom. Fractal patterns – understood
broadly as patterns which display self-similarity across a
range of scales – can vary greatly in their appearance (for
example, texture), and so our agents will only have a gen-
eral pattern ‘preference’. The resulting images thus stand
to be surprising or unexpected, but the behaviours of the
agents are nonetheless constrained: some images are frac-

Computational Creativity 2007

122

tal, others are not 1.
Before discussing the details of our modelling strate-

gies to these ends, we should ask, from a purely concep-
tual point of view, how a fractal framework helps with the
four evaluation worries described in Section 3. We con-
sider each in turn.

1. R1: The non-evaluative processing worry
One simple reason our agents do not evaluate is that
they don’t have anything to look for. They are not, at
present, pattern discriminators and so a fortiori are
not pattern evaluators. Incorporating fractal pattern
discrimination and, eventually, a preference for mak-
ing fractal mark patterns dissolves this particular as-
pect of the problem. The agents are thereby endowed
with a minimal evaluation technique, preferring cer-
tain marks over others and acting in ways that display
that basic choice 2.

2. R2: The myopic worry
In order that our simulated agents can discriminate
fractal patterns, rather than just detect marks, we
are replacing the 2mm x 2mm mark detector with
a 50mm x 50mm camera that points at the floor.
However, even with the addition of this camera, the
agent’s viewpoint is still extremely limited and does
not counter the myopic worry. This therefore remains
a challenging problem and may have to be resolved
by either using a bird’s eye view camera or some type
of memory in the agent’s controller so that it can
evaluate a larger part of the arena at any one time.
This issue is independent of the fractal framework
that is the focus of this paper and we do not address
it further here.

3. R3: The no-stopping worry
Incorporating fractal patterns provides a natural stop-
ping point. An agent making a fractal pattern will
stop once it has generated a pattern that is self-similar
across that range of scales that it can discriminate.
The agent thus finishes the mark-making and in a
way that is dependent upon the patterns made.

4. R4: Aesthetic value worry
This particular worry is perhaps too far downstream
from our current state of research, so a suggestion
for now will suffice. People like fractals. This seems
true on an intuitive level and has in fact been demon-
strated in the psychological literature (Spehar et al.,
2003). What’s more, if an audience member is armed
with the knowledge that the agents she is watch-
ing are attempting to complete a fractal pattern, a
very basic identification is achieved 3. That is, the

1This, in fact, is a point of controversy in the literature on
fractals (Halley et al., 2004). Given the methods of fractal mea-
surement we employ, however, some patterns will meet the stan-
dard while others will not. Whether this satisfies parties on both
sides of the debate over what we might call ‘fractal realism’ is
an open question.

2Whether this amounts to anything we reasonably call ‘evalu-
ation’ is debatable. The non-evaluative processing worry is cen-
tral to this paper, so more on this point in sections 5, 6, and 7.

3If and when we should be in a position to exhibit in a gallery,

agents’ behaviours are no longer unintelligibly ran-
dom, since one understands an agent’s general goal
and may watch as the agent attempts to achieve that
goal. A fractal framework thus affords potentially
aesthetically valuable finished products, as well as a
sharpened insight into the behaviours – and, perhaps,
the creative processes – of the artificial agents. This,
we suspect, moves us closer to the aesthetic merit
needed for a gallery display.

5 Theoretical Analysis of Evaluation and
Pattern Discrimination

What do we mean by ‘evaluation’? Evaluation is a topic
of rich debate in the philosophical literature ranging from
aesthetics to moral theory to action theory, among oth-
ers. This diversity provides a hint: evaluation is a context-
bound enterprise and so theorizing it should be shaped by
the relevant context. We are primarily concerned with art
and art-making, so our analysis will err towards an analy-
sis of aesthetic evaluation.

Most intuitively, to aesthetically evaluate some thing
is to assign value to that thing. Less circularly, to aes-
thetically evaluate some thing is to assess the merit of that
thing. We say that this work is ‘good’, that one ‘bad’, this
one ‘beautiful’, that one ‘poor.’ We can, and often do,
offer such assessments in general and unqualified ways.
However, these assessments are typically made for partic-
ular reasons; and we provide these reasons if our assess-
ment is called into question. I assign merit to some work
because it has this or that property, and I appeal to the
latter in justifying the former. This reveals something im-
portant about aesthetic evaluation: aesthetic evaluation, at
least typically, involves a descriptive element.

There is an historical dichotomy between the evalua-
tive and the descriptive. The distinction is – as is often
the case with supposed dichotomies – a fuzzy one. The
20th century aesthetician Frank Sibley offers an insightful
analysis of this distinction, with special emphasis on its
place in philosophical aesthetics. Sibley’s emphasis is on
evaluative versus descriptive terms, but so long as we take
a use of such terms to be indicative of the corresponding
judgment, we can generalize from his analysis to evalua-
tive and descriptive acts (Sibley, 2001).

First, Sibley suggests, some terms are used to indicate
that an F has value (or does not), without indicating why
or how F has this value. One may, for example, call a
thing ‘good’, ‘bad’, ‘nice’, ‘nasty’, ‘worthless’ and so on,
without attributing any particular properties to that thing.
Sibley calls such terms solely evaluative. These terms and
their correlative use are better understood when contrasted
with a second class of terms. Some terms indicate a prop-
erty the possession of which is a merit (or de-merit) rel-
ative to some category. ‘Sharp’ is such a term relative
to the category of knives (and, oppositely, so is ‘dull’),
‘level’ for billiard tables, ‘round’ for basketballs, and so
on. Such terms, Sibley suggests, are often taken for eval-
uative ones. However, we might instead think of them as
straightforward property terms, since to use them is to as-

the display would be not merely of resulting images, but of the
embodied robots making marks on the floor of a walled arena.

Computational Creativity 2007

123

cribe a property to an object and indeed can be done with-
out an additional evaluative assessment of that object. One
can describe a knife as sharp without knowing that that
sharpness enables proper performance of a knife’s func-
tion. In Sibley’s words, “[i]n general, one does not need
to know, with such a term, ‘P’, though one often will, that
the property counts as a merit in something in order to be
able to ascertain that the thing may correctly be called ‘P”’
(Sibley, 2001, p.92). Indeed use of these terms is com-
mon in many spheres, including aesthetics and criticism.
Consider critical and appreciative practice: we do offer
descriptions of artworks (for example, of their formal, art-
historical, generative, or socio-political properties) which
may imply an assessment of merit, but which could be of-
fered without such an assessment. The important point of
contrast is that to use a term of this type, unlike solely
evaluative terms, is to identify a particular feature of that
object, and this is a descriptive rather than an evaluative
act.

As Sibley admits, use of a descriptive merit term often,
even if not by conceptual necessity, implies an assignment
of merit. To this end, we might, again following Sibley, in-
troduce a third category of terms: evaluation-added terms.
Such terms involve both a descriptive and an evaluative
element. In using a term of this type, one describes an F
by indicating that F has some property G, and then adds
to this description an assessment of merit, where this as-
sessment takes place on the basis of the description of F ’s
possession of G. Sibley offers ‘tasty’ as one example. If
I call a meal ‘tasty’, I am no doubt giving a positive eval-
uation of the meal and this evaluation implies a certain
description, namely, that the meal has a lot of flavour.

Sibley goes on to question whether aesthetic evalua-
tion carves up so neatly, and indeed questions how much
of so-called aesthetic evaluation is even evaluative rather
than descriptive. No matter. We can safely glean the
following lesson from Sibley’s analysis. Aesthetic eval-
uation generally involves both a descriptive and a merit-
assigning element; it roughly resembles the use of what
Sibley calls ‘evaluation-added terms.’ Consider a familiar
scene from a gallery or exhibit. My friend Jon says to me,
“This sculpture is lovely.” An eyebrow raised, I respond,
“Really, how so?” Jon’s response might go something as
follows. “Well, it possesses a certain balance. Notice how
the curve of her hip echoes the positioning of her oppo-
site elbow. And the face is just expressive enough: the
eyes are blank but wide open; the lips are slightly curled
at the corners, not quite smiling and not quite frowning.”
Jon may go on and on until I have had enough. “You’re
right. It’s lovely. Time for a drink”. This is a simple
example of appreciative practice. One may initially of-
fer an unqualified evaluation of a work (using what Sibley
calls a ‘solely evaluative term’). However, as is often the
case, one has reasons for making that evaluation and will
offer them when asked. These reasons, as with Jon’s rea-
sons, often, perhaps always, involve descriptions of the
thing evaluated. They involve an indication of the proper-
ties which underwrite one’s assessment of merit. This is
enough to motivate the following understanding of evalu-
ation.

Evaluating an F involves:

1. d indicating that F possesses property G; and

2. m indicating that one finds merit/de-merit in G as
possessed by F .

d is thus the descriptive element, and m the (tradition-
ally) evaluative element. One can think about d and m as
necessary and conjointly sufficient conditions for evalua-
tion if one prefers, but we see no need to make this com-
mitment. For our purposes, it suffices to say that evalu-
ation, especially in contexts of aesthetic appreciation and
criticism, typically involves both a property description
d and an assignment of merit m. Indeed, this seems to
capture a fundamental schema for evaluation, in whatever
realm it should be. The difference, for example, between
moral evaluation and aesthetic evaluation lies in the kind
of merit that is assigned and, perhaps, in which properties
are relevantly discriminated. Common to both kinds is the
presence of a descriptive and an evaluative element.

We are taking a property description to be no more
than the indication that an F has property G or, if one
prefers, the discrimination of G as possessed by F . This
kind of discrimination is clearly descriptive (as contrasted
with evaluative), but it need not be any kind of rich de-
scription. Indeed it need not be linguistic: a picture, point-
ing at something (given the right context), the firing of a
feature detecting neuron, or pushing one button rather than
another could each just as well serve this indicative role.
One may have reservations about calling these acts and
events ‘descriptions’ given the heavy philosophical bag-
gage that comes with this term. We are sensitive to these
worries, and indeed our analysis of evaluation does not re-
quire us to think of descriptions in any special way. To be
clear: the only point that need be granted is that evaluation
involves (partly) an indication that the object under eval-
uation possesses some property or properties. And this
activity, following Sibley, can be performed in purely de-
scriptive, non-evaluative ways.

This kind of evaluation is no less a feature of art-
making than it is of art appreciating. When making an
artwork, an artist constantly makes choices which are in-
formed by evaluation of the work up to its present state.
These evaluations involve an assessment of merit – where
this assessment is informed by property descriptions – of
the properties possessed by the work in progress. There
may be a difference in the degree to which or frequency
with which an artist justifies her ongoing evaluations by
appeal to the underwriting descriptions, but this is merely
a contingent social fact. If we forced artists to work un-
der the sociological microscope they would, like Jon, offer
descriptions of the work in progress which justified their
assignment of merit or de-merit and the corresponding de-
cision that came with that assignment. The fact that they
are more often pressed, post facto, to explain their eval-
uations does not imply that they made them in any other
way.

6 Fractal Pattern Discrimination
In this section we describe our approach to implement-
ing real-time fractal pattern discrimination on a simulated
robot. The key property of a fractal object is that it is

Computational Creativity 2007

124

self-similar over a range of spatial scales. Three types of
self-similarity are found in fractals. An object can be ex-
actly self-similar at different scales, for example, Cantor
dust (Figure 1), the Sierpinski carpet, Koch snowflake and
other fractals which are generated by an iterated function
system (which uses a geometric replacement rule). Ob-
jects can also display approximate or quasi-, rather than
exact, self-similarity at different scales. These fractals
contain distorted copies of the entire fractal at different
scales. For example, fractals generated using an escape-
time technique, such as the Mandelbrot and Julia sets, are
quasi-self-similar. In the weakest form of self-similarity,
statistical measures (such as ‘fractal dimension’) are pre-
served across scales. For example, fractals generated by
processes such as diffusion-limited aggregation are statis-
tically self-similar.

Only mathematical fractals display self-similarity
across an infinite number of scales. Natural fractal objects
display quasi- or statistical-self-similarity over a limited
range of scales.

In contrast to Euclidean objects, fractals usually have
non-integer dimensions. The fractal dimension measures
the extent to which an object fills the Euclidean space in
which it is embedded (Mandelbrot, 1982). A set of points
along a line will have a fractal dimension between 0 and 1;
a set of points on a plane have a fractal dimension between
1 and 2.

6.1 The Box-Counting Approach to Measuring
Fractal Dimension

Box-counting is the simplest and most widely used tech-
nique for measuring fractal dimension and involves su-
perimposing a series of regular grids over the data set. A
regular grid consists of square boxes with a side length
s. The measurement process is carried out using grids
with a range of different side lengths. The first grid is
layed over the set of data points and the number of oc-
cupied boxes, N(s), counted. A box is occupied if it
contains at least one data point. N(s) is then plotted
against 1/s for all box sizes. On a log-log graph, the
slope of the graph is an estimate of fractal dimension. A
fast O(n log n) algorithm (where n is the number of data
points) was proposed by Liebovitch and Toth (1989) and
implemented in C by Sarraille and DiFalco (Sarraille and
Myers, 1994). This FD3 code is open source and avail-
able from: ftp://www.cs.csustan.edu/pub/fd3/. We have
adapted FD3 to enable our robots to perform real time
fractal pattern discrimination.

In order to confirm that a structure is fractal, it is nec-
essary to show that it is self-similar over a reasonable
number of scales. What constitutes a ‘reasonable num-
ber’ is a matter of some controversy. The range of scales
is defined as: log10(Lmax/Lmin), where Lmax is the
largest or coarsest scale, and Lmin the smallest or finest.
In the physical sciences, the scale ranges tend to be small
(Mandelbrot, 1998) and this can lead to incorrect estima-
tions of fractal dimension or erroneously describing non-
fractal structures as fractal (‘apparent fractality’) (Ham-
burger et al., 1996). Halley et al. (2004) recommend a
scale range of greater than two orders of magnitude to

avoid these problems, but this is not always possible.
It is important to note that although the box counting

technique, described above, can employ a very large range
of box sizes, the usable range is generally a lot smaller.
For example, the largest box size used in FD3 is 232 larger
than the smallest box size (giving over 9 orders of mag-
nitude scale range) but estimates from the smallest and
the largest boxes have to be discarded, often resulting in
a usable scale range of less than one order of magnitude.
At very fine scales, none of the boxes contain more than
one data point (depletion); at coarser scales all of the data
points can be contained in one box (saturation). At these
limits, the box counting algorithm will incorrectly esti-
mate the fractal dimension. Consequently, fractal analy-
sis is generally limited to a range of box sizes. The two
largest box sizes are ignored. The smallest box size s
used to estimate the fractal dimension meets the condi-
tion NB(s) ¿ N/5, where N is the number of data points
and NB(s) the minimal number of boxes required to cover
the data set at scale s (Liebovitch and Toth, 1989). FD3,
which we use to measure fractal dimension, follows this
convention. Our robots process small pixel arrays where
the usable scale range is typically between 1.2 and 1.8.

Hamburger et al. (1996) investigated the fractal di-
mension of a number of small discs randomly scattered
on the plane and demonstrated that this intrinsically non
self-similar pattern can exhibit an almost linear relation-
ship between 1/s and N(s) over two orders of magni-
tude 4. “Whether an apparent straight line on logarithmic
axes really suggests a fractal or not is obviously a difficult
and fundamental question” (Halley et al., 2004, p.259).
Knowledge of the process that generated a pattern can
sometimes help determine whether it is legitimate to de-
scribe it as fractal or not. However, it is important to note
that using a fractal dimension measurement tool, such as
Fd3, ‘off the shelf’ and without any consideration of the
pattern that is being measured can lead to erroneously la-
belling a non-fractal object as fractal.

6.2 Lacunarity Analysis

A further issue, relevant to our project, is that two gen-
uinely fractal objects can have the same fractal dimension
and yet be very different in appearance, for example, Can-
tor dusts (Figure 1). One way that such patterns can be
discriminated is in terms of their texture. Lacunarity is
a useful measure of texture, introduced by Mandelbrot
(1982), that quantifies the heterogeneity of the gaps in a
pattern. Patterns that have gap sizes that are distributed
over a greater range have a higher lacunarity index than
patterns where the gap sizes are more similar. Objects that
have a low lacunarity index are translationally-invariant
because of their uniform gap sizes (Plotnick et al., 1993).
Intuitively, one could shift sections of a pattern without al-
tering its overall appearance. For a high lacunarity pattern,

4It is a matter of debate in the fractal literature whether pat-
terns generated by random processes, for example, Brownian
motion and self-avoiding random walks, should be considered
apparent or actual fractals. We are clear that we want our robots
to generate non-random self-similar mark patterns and we there-
fore want them to discriminate these patterns from those gener-
ated by random processes.

Computational Creativity 2007

125

Figure 1: Cantor dust - an exactly self-similar fractal.
Each of the lines has the same fractal dimension (0.6309)
but a different texture, which is dependent on how many
times the replacement rule (remove the central third of
each line segment) has been applied. For illustrative pur-
poses, the lines have been thickened.

shifting sections would become very apparent because the
pattern is not translationally-invariant. It is important to
note that lacunarity is a scale-dependent index - an object
can have a homogenous texture at one scale but a hetero-
geneous texture at another scale. Further, one can measure
the lacunarity of objects which are not self-similar.

There are a number of different algorithms for
calculating the lacunarity of a pattern and there is not
always agreement between the values that they generate
(Halley et al., 2004). The most widely used technique is
the gliding box algorithm (Allain and Cloitre, 1991). In
this method a series of square boxes with varying side
lengths s are placed over the data set and the number of
points in each box (the box mass) is counted. The first
box is placed in the top left hand corner and the box mass
measured and then the box is systematically moved over
the data set so that the position varies by one column or
row. Unlike in the box counting method for measuring
fractal dimension, in the gliding box algorithm the boxes
overlap. For a square pattern with side M , there are
(M − s + 1)2 positions for a box of side length s where
the box mass is measured. For each box size s, the mean
and variance of the box mass is calculated. Lacunarity
(Λ) is calculated as:

Λ = variance(s)/mean(s)2 + 1.

When s is equal to 1, that is, a single pixel, or the grain
of the data set, Λ is a function of the number of points in
the data set and is independent of their spatial distribution.
In this case, Λ = 1/% of on pixels, where, in the case
of a black and white image, an on pixel is black. When a
box is the size of the data set, the variance is 0 and so Λ
is 1. In between the lower and upper bounds, lacunarity
varies according to the range of gap sizes (or alternatively,
clump sizes) at a given scale.

If an object is a homogenous fractal then the same scal-
ing law applies at all positions of the object. Further, a
log/log plot of lacunarity versus box side length generates
a straight line where the slope is equal to the fractal di-
mension (D) minus the Euclidean embedding dimension
(E); that is, D - 2 for all patterns on the plane (Allain and
Cloitre, 1991). We use this relationship between fractal
dimension and lacunarity to hard-wire a fractal discrimi-
nation mechanism in our robots.

6.3 Discriminating Random from Non-random
Spatial Patterns

Figure 2: A randomly generated pattern of line segments
which has the same % of black pixels (36%) as the two
images in Figure 3. This pattern is discriminated from a
self-similar fractal pattern, such as the left hand side im-
age in Figure 3 using the method outlined in Section 6.3.

In this section we describe how we are using a box
counting approach to get real-time estimates of fractal di-
mension and lacunarity of the spatial pattern in a sim-
ulated robot’s visual field. Given the small number of
points in the data set (limited by the small visual field of
the robot) and the generally limited scale range, the tech-
nique we are employing could erroneously estimate self-
similarity. At this preliminary stage, our goal is to develop
a real-time method that enables our agents to discriminate
random from non-random self-similar mark patterns. The
class of non-random self-similar patterns that the robot
can discriminate should have a structure such that:

1. the robot can produce members of this class with its
pen;

2. and be sufficiently ‘interesting’ such that some mem-
bers of this class are suitable for display (see ‘aes-
thetic value worry’ in Section 3).

At each sensory-motor update, the robot controller
processes its 50mm x 50mm visual array in the following
way:

1. using a box counting algorithm it estimates the frac-
tal dimension (D) of the pixels over a range of scales
where the ratio of the largest to the smallest box
length side (s) is 232: 1 (the data points are re-scaled
in order to achieve this range of box sizes);

2. using a box counting algorithm it estimates the lacu-
narity (Λ) at the same range of scales 5;

3. using regression analysis it measures the goodness
of fit (R2) of the lacunarity curve over the range of
scales which form the basis of the fractal dimension
estimate;

5By using a box counting approach we estimate Λ on the ba-
sis of far fewer samples than is used in a gliding box algorithm.
However, real time processing constraints forced this compro-
mise in these preliminary experiments.

Computational Creativity 2007

126

4. if R2 is greater than 0.95, it calculates the % error
between the slope of the lacunarity curve and the es-
timate (D - E) of the lacunarity curve;

5. if R2 > 0.95 AND % error < 20%, then the fractal
pre-processing of the pixel array returns 1, otherwise
0.

This processing technique successfully discriminates
a wide range of self-similar images from randomly gen-
erated images – not only images consisting of randomly
distributed points but also randomly distributed lines seg-
ments, such as Figure 2, which are more likely to be gen-
erated by our robots than points.

6.4 The Fractal Discrimination Task

Figure 3: The left image is the texture on the target floor
region in the evolutionary robotics experiment; the right
image is the random point texture on the rest of the arena
floor. Both patterns have the same percentage of black
pixels (36%). The method outlined in Section 6.3 enables
a simulated robot to discriminate between these two pat-
terns.

The experiment described in this section was per-
formed in a modified version of the Evorobot simulator
(Nolfi, 2000). This software simulates a Khepera robot
(Mondada et al., 1993) acting in user specified environ-
ments that can comprise of walls, large and small round
objects and lights. Sensor readings taken from a physical
Khepera robot are used to model the environment/sensor
interactions.

The robots are controlled with neural networks based
on Nolfi’s (1997) emergent modularity architecture which
has been successfully used to control complex robot be-
haviours, such as garbage collection. In the experiment
reported here, each controller consists of 7 sensors (6 IR
and 1 floor camera that is directly under the centre of the
robot and has a visual field of 50mm x 50mm) and two
pairs of motor units, controlling the right and left motor
respectively. Each sensor connects to each motor neuron,
giving 28 connections in the network. For details of the
neural network update algorithm see Bird et al. (2007).

We used a genetic algorithm (GA) to evolve the bi-
ases of the 4 motor units and the connection weights be-
tween the sensor and motor neurons. The population size
was 100 and the experiments were run for 600 gener-
ations. The initial population was randomly generated,
each genotype consisting of the 32 neural network pa-
rameters encoded as an 8 bit integer-valued vector (range
[0,255]). The mutation rate was 0.01 per allele and we
did not use crossover. For more details see Bird et al.

(2007) where the same GA was used to evolve robot mark-
making behaviour.

The fitness function rewards proximity to the target
area in the arena, with extra fitness if a robot is positioned
on the target area at the end of a trial. The target area is
100mm x 100m and placed in one of two positions adja-
cent to the wall of a 400mm x 400mm arena. The target
region consists of a fractal texture (Figure 3- left image);
the rest of the floor has a random point pattern with the
same overall ratio of black to white pixels as the target
texture (36%)(Figure 3 - right image). If the robot crashes
into an arena wall the trial is stopped and the fitness accu-
mulated up to that point is averaged over the total number
of time steps, thereby implicitly penalising robots that do
not avoid obstacles.

Each genotype is instantiated as a robot controller and
the robot is placed in a random position and orientation
in the central area of the arena. Each individual is tested
over 10 trials and the position of the target region is placed
in two different positions, both adjacent to the wall of the
arena. Every robot in the population was tested on the
same series of initial positions and orientations each gen-
eration, and these changed every generation.

6.5 Preliminary Results

In early generations the robots do not move very far from
their initial position or if they do they crash into walls.
However, within 100 generations the majority of the pop-
ulation avoid obstacles and perform wall following. After
500 generations, the fittest individuals move in a straight
line until they come close to a wall then follow the wall
until they are over the target area and then stop. This is
not a particularly surprising result as the patterns covering
the target region and floor were chosen so that the fractal
discrimination mechanism could clearly discriminate be-
tween them. However, it does demonstrate that this mech-
anism can be used to control the real-time behaviour of a
robot and enable it to discriminate between random and
fractal patterns on the floor. As in our previous experi-
ments (Bird and Stokes, 2006b) the robots have evolved
to use the arena walls (a constant and reliable feature of
the environment): in the current experiment they provide
a means of finding the target region which is always posi-
tioned adjacent to the edge of the arena.

7 Discussion
What does the preliminary theoretical analysis of evalu-
ation tell us about our artificial agents and their pattern
discrimination behaviour? By discriminating a fractal pat-
tern from a random pattern are our agents evaluating their
environments? Not obviously. But they are on their way.
By discriminating fractal patterns, our agents are provid-
ing property descriptions, sparse though such descriptions
may be, of their environment. When an agent stops on
a fractal pattern and not on random patterns, it indicates
the presence of a property – namely homogenous self-
similarity – in the target location. This is just to say that
this behaviour ‘reports’ that some part of the environment
is a certain way, and other parts are not. The report is no

Computational Creativity 2007

127

richer than this, but neither is my report that this object is
a square, while that one is not. Both kinds of reports are
minimally descriptive of the world.

As we outlined in Section 5, evaluation comprises a
descriptive element. Our agents are thus performing one
element of evaluation: their pattern discrimination is a
simple property description of their environment. How-
ever, what about the second, assessment of merit, compo-
nent of evaluation: do our agents do this? This is a trickier
issue. But here is a speculative suggestion. If our concep-
tion of evaluation is accurate, then it requires assigning
merit to the properties of the object that have been dis-
criminated. One assigns merit to the things that one likes
or prefers, and de-merit to the things that one does not
like or prefer. Preferences drive an agent, motivating it to
act in whatever ways it does. Assignment of merit is thus
to indicate, at base, what philosophers and psychologists
call a ‘conative attitude’ 6. This is true of human beings as
well as laboratory rats; evaluation, no matter how rich, in-
volves conation. Our agents, to evaluate in any interesting
sense, thus need a preference or some degree of conation.

It would be misleading to describe the agents in our
simulation experiments as possessing individual prefer-
ences. That is, our agents have not developed in their ‘life
spans’ a preference or conative attitude of any kind. How-
ever, in this respect, do the agents differ from a laboratory
rat, whose conative attitude of hunger motivates it to push
the lever on the right and not the one on the left? The
rat’s preference is no more individually developed than is
the fractal preference of our simulated agents. In the case
of both the rat and the artificial agent, the preference has,
in some sense, evolved in the population to which each
belongs7.

We might therefore say that fit robots, by successfully
distinguishing fractals from non-fractals (and later in our
research, by completing fractal patterns by mark-making)
are thereby performing a number of simple evaluations
which inform their respective behaviours. This is not rich
evaluative behaviour, but if the rat is evaluating, then so is
our robot. This, we suggest, is the basic route from mark-
making and detection via pattern discrimination to pattern
evaluation.

Acknowledgements
The Computational Intelligence, Creativity and Cognition
project is funded by the AHRC and led by Paul Brown
in collaboration with Phil Husbands, Margaret Boden and
Charlie Gere.

6Conative attitudes are motivational states and are tradition-
ally contrasted with both cognitive, or knowledge acquiring,
states and states of affect. They comprise desires, values, prefer-
ences, likings, and so on. They are proactive and without them,
agents do not act.

7In the case of the rat both the preference and the mechanism
that underpins it evolved whereas in our robots the discrimina-
tion mechanism was hard-wired by us and the robot evolved the
ability to use it appropriately. By prescribing what patterns it
can discriminate, it might be argued that we have compromised
the autonomy of the agent and consequently future fractal mark-
making behaviour cannot be described as ‘creative’ (see Section
2), even though the fractal pattern discrimination might be min-
imally evaluative.

References
Allain, C. and Cloitre, M. (1991). Characterising the lacu-

narity of random and deterministic fractal sets. Physical
Review A, 44:3552–3558.

Bird, J. and Stokes, D. (2006a). Evolving fractal drawings.
In Soddu, C., editor, Proceedings of the 9th Generative
Art Conference, pages 317–327.

Bird, J. and Stokes, D. (2006b). Evolving minimally cre-
ative robots. In Colton, S. and Pease, A., editors, Pro-
ceedings of the Third Joint Workshop on Computational
Creativity, pages 1–5.

Bird, J., Stokes, D., Husbands, P., Brown, P., and Bigge,
B. (2007). Towards autonomous artworks. Leonardo
Electronic Almanac. In press.

Boden, M. A. (2004). The Creative Mind. Routledge,
London, second edition.

Cohen, H. (1999). Colouring without seeing: A problem
in machine creativity. AISB Quarterly, 102:26–35.

Halley, J. M., Hartley, S., Kallimanis, A. S., Kunin, W. E.,
Lennon, J. J., and Sgardelis, S. P. (2004). Uses and
abuses of fractal methodology in ecology. Ecology Let-
ters, 7:254–271.

Hamburger, D., Biham, O., and Avnir, D. (1996). Appar-
ent fractality emerging from models of random distri-
butions. Physical Review E, 53:3342–3358.

Liebovitch, L. S. and Toth, T. (1989). A fast algorithm to
determine fractal dimensions by box counting. Physics
Letters A, 141(8-9):386–390.

Mandelbrot, B. B. (1982). The Fractal Geometry of Na-
ture. Freeman, New York.

Mandelbrot, B. B. (1998). Is nature fractal? Science,
279:783–784.

McCorduck, P. (1991). AARON’s Code: Meta-Art, Artifi-
cial Intelligence and the Work of Harold Cohen. Free-
man, New York.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile
robot miniaturisation: A tool for investigation in con-
trol algorithms. In Proceedings of the Third Interna-
tional Symposium on Experimental Robotics, pages 501
– 503, Berlin. Springer Verlag.

Nolfi, S. (2000). Evorobot 1.1. Institute
of Cognitive Sciences and Technologies.
http://gral.ip.rm.cnr.it/evorobot/simulator.html.

Plotnick, R. E., Gardner, R. H., and O’Neill, V. O. (1993).
Lacunarity indices as measures of landscape texture.
Landscape Ecology, 8(3):201–211.

Sarraille, J. J. and Myers, L. S. (1994). FD3: A program
for measuring fractal dimension. Educational and Psy-
chological Measurement, 54(1):94–97.

Sibley, F. (2001). Particularity, art and evaluation. In Ben-
son, J., Redfern, B., and Cox, R., editors, Approach to
Aesthetics: Collected Papers on Philosophical Aesthet-
ics, Frank Sibley.

Spehar, B., Clifford, C. W. G., Newell, B. R., and Taylor,
R. P. (2003). Universal aesthetic of fractals. Computers
and Graphics, 27:813–820.

Computational Creativity 2007

128

Creative Ecosystems

Jon McCormack
Centre for Electronic Media Art

Clayton School of IT, Monash Univeristy
Clayton 3800, Australia

Jon.McCormack@infotech.monash.edu.au

Abstract

This paper addresses problems in computational creative
discovery, either autonomous or in synergetic tandem with
humans. A computer program generates output as a com-
bination of base primitives whose interpretation must lie
outside the program itself. Concepts of combinatoric and
creative emergence are analysed in relation to creative out-
puts being novel and appropriate combinations of base
primitives, with the conclusion that the choice of the gen-
erative process that builds and combines the primitives is
of high importance. The generalised concept of an artifi-
cial ecosystem, which adapts concepts and processes from
a biological ecosystem at a metaphoric level, is an appro-
priate generative system for creative discovery. The fun-
damental properties of artificial ecosystems are discussed
and examples given in two different creative problem do-
mains. Systems are implemented as pure simulation, and
where the ecosystem concept is expanded to include real
environments and people as ecosystem components, offer
an alternative to the ‘software tool’ approach of conven-
tional creative software.

Keywords: Artificial ecosystems, Combinationalism,
Emergence.

“Theories are important and indispensable be-
cause without them we could not orientate our-
selves in the world — we could not live. Even
our observations are interpreted with their help.”

— Karl Popper, The Myth of the Framework

1 Introduction

We are interested in problems of computational creative
discovery where computer processes assist in enhancing
human creativity or may autonomously exhibit creative
behaviour independently. The intention is to develop ways

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

of working with technology that achieve creative possi-
bilities unattainable from any existing software tools or
methods. These goals will be addressed here in the con-
text of artistic creation, however the results may be appli-
cable to many forms of creative discovery.

Darwinian evolution has been described as the only
theory with the “explanatory power for the design and
function of living systems. . . accounting for the amaz-
ing diversity and astonishing complexity of life” (Nowak,
2006). Evolutionary synthesis is a process capable of
generating unprecedented novelty, i.e. it is creative. It
has been able to create things like prokaryotes, eukary-
otes, higher multicellularity and language through a non-
teleological process of replication and selection. We
would like to adapt, on a metaphoric level, the mech-
anisms of biological evolution in order to develop new
approaches to computational creativity. In Biology, the
physical processes of replication and selection take place
in an environment, populated by species that interact with
and modify this environment, i.e. an ecosystem. Pro-
cesses from biological ecosystems serve as inspiration for
computational artificial ecosystems. The aim is to struc-
ture these artificial ecosystems in such a way that they ex-
hibit novel discovery in a creative context rather than a
biological one.

We consider creativity in terms that it involves the gen-
eration of something novel and appropriate (i.e. unex-
pected, valuable) to the particular aesthetic domain. Van
Langen et. al. conclude the necessary conditions for any
artificial creative system must be the ability to interact
with its environment, learn, and self-organise (van Lan-
gen et al., 2004). In this paper, the aim is for creative
discovery by machines, or humans and machines working
synergistically, rather than a computational model of hu-
man creativity or knowledge-based models for a particular
domain.

Before looking at how artificial ecosystem concepts
can be used as processes for creative discovery, the next
section examines how such processes fit into computa-
tional creative discovery in general.

2 Combinationalism

A major controversy regarding computational creativity
relates to the concept of ‘combinationalism’: the under-
standing that “creativity is the creative combination or re-

Computational Creativity 2007

129

combination of previously existing elements” (Dartnall,
2002). This understanding is based on the intuition that
one cannot create something new from nothing, hence we
require a “combination or recombination of what we al-
ready had” — the opposing view being that creativity be-
gins with knowledge, skill and abilities, and emerges from
these faculties through interaction with the environment.
The challenge is to account for how these cognitive prop-
erties give rise to creative output (McCormack, 2005b).

Clearly, many creative outputs are indeed a combi-
nation of basic primitives organised in a new way. Let
us consider an arbitrary system that generates some cre-
ativeoutputfromaþxedsetofindivisible, distinctprim-
itives (basic building blocks, fundamental units). We
will call this set of n distinct primitives V , i.e.: V =
{p1, p2, . . . , pn}. A generative process, G selects ele-
ments from V to make S ∈ V r, an output composed by
some permutation of primitives from V . We will assume
that:
• the ordering of primitives in S is important;
• repetitions of primitives are permitted;
• The size of S isþxed1 and |S| = r, where r > 0.

The process of generating S from V by G is denoted:

V
G−→ S

Denote each speciþc possibility,Si, i = 1, 2, . . . , nr

(since there are nr possibilities for S) and Q ∈ S∗ =
{S1, S2, · · · , Snr} the set of all possible outputs. Further,
letusdeþneQG ⊆ Q the set of all outputs generated by G.
The conceptual space, C,isdeþnedasthebaseprimitives,
V and the rules for combining them, i.e.: C = V,G.

As a simple example, let us suppose V is a set of mu-
sical notes, i.e. V = {A, B,C, D, E, F,G} and r = 12,
so each S is a 12 note melody composed from the notes
in V . In this case nr = 13, 841, 287, 201. Clearly, for
non-trivial problems the number of possibilities for S is
very large, in many cases beyond astronomical propor-
tions such as the estimated number of particles in the uni-
verse.

This vast space of potential combinatorial possibili-
ties for S illustrates why such systems are said to display
combinatoric emergence,thatis,conþgurationsgenerated
by G appear to express new properties or structures not
found in the individual primitive components p. Note that
such new properties or structures are generally observed,
notdeþnedquantitatively(Baas,1994;DorinandMcCor-
mack, 2002).

While the potential output generated by G may be
vast, any individual output S can only be composed of
elements from V . In the case of our musical example, we
could generate a large number of melodies from V, but
none of those melodies could contain the note C, for ex-
ample, because it is not a member of V .

2.1 Creative Emergence

In the case of what is termed creative emergence, it is pro-
posed that fundamentally new primitives enter the system,

1Arbitrary size outputs are possible by incorporating an
empty primitive into V , i.e. V ∪ {∅}.

opening up a new set of possibilities that were not pre-
viously possible (Cariani, 1991, 1997). In more formal
terms,thisprocessmodiþestheconceptualspace:

C CΛ

Where CΛisthenewconceptualspace.AccordingtoBird
(2004), in an analogy with letters generating words, cre-
ative emergence “involves expanding the alphabet of let-
ters by transforming the underlying generative system as
well as combining the letters into new words” (Fig. 1).
In the terminology used in this paper, creative emergence
can introduce new members into V , i.e.: V ⇒ V Λ. The
introduction of new primitives in V would by necessity
involve some transformation of G, since by deþnitionG
only knows how to generate things from the original V .

combinatoric emergence

creative emergence

a D

x
t

1 atD
11a

axat

set of primitives

processes for
combining primitives

sets of possible
combinations of

primitives

a D

x
t

1

z

*
atD

11a
*xz

process for
constructing
new primitives

set of primitives

processes for
combining primitives

Figure 1: Combinatoric and creative emergence (redrawn
from(Bird,2004))

A computational system that combines primitives
must provide a semantic interpretation for the members
of V . For example, the symbol ‘A’ must be interpreted as
a musical note before it can represent music. It is easy to
generate additional primitive symbols that can be added to
V , but seemingly impossible to computationally discover
new interpretations for those symbols, because the inter-
pretation of those symbols is done outside of the software
itself (by a listener in the case of a musical example).

There are two conclusions to be drawn from this dis-
cussion. The þrst, rather obviously, is that in any com-
binatorial system, you will only get combinations of the
base primitives for which you provide an a priori inter-
pretation. The knowledge of how to interpret symbols is
provided by the programmer, not the program (the com-
puter can only differentiate one symbol from another).

The second point is that a combinatorial approach is
still a useful one if we get our base primitives right. As
we have seen, the scope of possibilities is very large in
any practicable system. Composers, for example, seem in
themaincontentwithcomposingfromaþxedsetofbase
primitives. Architects can design great architecture from
aþxedsetofbuildingmaterials. Anydigitalimagecanbe
made by combining pixels in the right order.

Computational Creativity 2007

130

3 Generative processes for Creative
Discovery

At this point, we have said nothing about the quality or
utility of G and the output it generates. Having a vast
range of possibilities in a combinatorial system represents
only a potential for actually finding good combinations.
It is trivial to construct a generative process, G that can
generate all the possible members of Q (i.e. QG = Q).
Each combination Si generated by G will be new, so find-
ing novelty is not the problem, it is finding appropriate
novelty. The exponential expansion of possibilities, de-
pendent on n and r, means that for any non-trivial system,
brute-force methods such as an iterative or random search
will not be practical.

Ideally, we would like a generative process that finds
the creatively interesting combinations and avoids the un-
interesting ones. For many domains the proportion of
what we might be inclined to call “interesting” is likely to
be extreemly small. Randomly sampling individual mem-
bers fromQ is not, in general, a useful strategy for finding
the appropriate members of that set.

If our approach is to relegate creative discovery to
being a search or optimisation problem, then a num-
ber of general algorithms already exist for this task, e.g.
(Michalewicz and Fogel, 1999). One popular choice has
been the use of Evolutionary Computing (EC) methods,
such as genetic algorithms, evolution strategies or genetic
programming.

Standard EC methods require an explicit evaluation of
fitness, that is a comparative ranking between possible so-
lutions in order to determine the composition of the popu-
lation for the next generation. For creative discovery, this
is a difficult problem for two reasons:

• evaluation of the quality of creative output is highly
subjective and context dependent, relying on much
domain specific knowledge that is difficult to quan-
tify;

• the type of knowledge and evaluation necessary de-
pends specifically on the creative task or activity be-
gin simulated, i.e. it is difficult to generalise or ab-
stract.

It is for these reasons (and many others) that machine rep-
resentable fitness functions for “creativity”, or “aesthet-
ics” have largely unsuccessful (though not for want of try-
ing, e.g. (Birkhoff, 1933)).

Evaluation of subjective criteria is relatively easy for
humans, so a natural approach incorporate human evalu-
ation of fitness into the algorithm. Interactive Evolution
(also know as aesthetic selection or aesthetic evolution)
have found wide application and popularity for a variety
of problems in creative discovery (Takagi, 2001). In this
approach, the problem of finding machine-representable
fitness functions for aesthetic or subjective properties is
circumvented in favour of human fitness evaluation and
ranking. While this is a popular method, it is not without
significant problems (Dorin, 2001; McCormack, 2005b).
These problems include: difficulty in fine-grained eval-
uation; limited population sizes; slow evaluation times;
poor balancing between exploration and exploitation (one

of the GA’s main benefits as a search method (Eiben and
Smith, 2003, p. 29)).

The central question addressed by this paper, then, is
this: in a combinatorial system, how can we search and
optimise using EC techniques without an explicit fitness
evaluation, either by human or machine? That is, what
kinds of processes, G are best suited to creative discov-
ery from a combinatorial system? The answer proposed
here is through the use of an artificial ecosystem approach.
This approach is detailed in the following sections.

4 Artificial Ecosystems

The design of environments from which creative be-
haviour is expected to emerge is at least as important as the
design of the individuals who are expected to evolve this
behaviour. The Artificial Ecosystem as a generalised evo-
lutionary approach for creative discovery. Natural ecosys-
tems exhibit a vast array of complex phenomena, includ-
ing homeostasis, food-webs, wide causal dependencies
and feedback loops, even (controversially) evolution at the
ecosystem level (Swenson et al., 2000). Species within the
ecosystem compete for resources in order to survive and
reproduce. Typical co-operative and competitive evolu-
tionary strategies are observed, such as mutualism, sym-
biosis, predation and parasitism. To be glib, it could be
said that the ecosystem has a lot of interesting features go-
ing for it. We would like to harness some of these features
for the purposes of creative discovery — the discovery of
novelty in a system without explicit teleology.

The concept of an artificial ecosystem used here is for-
mative and based on abstractions of selected processes
found in biology. We are interested in developing gen-
eral algorithms for creative discovery. These algorithms
are based on dynamic evolutionary processes observed in
biological ecosystems. Just as genetic algorithms are not
a simulation of natural selection, the artificial ecosystem
algorithms presented here are not intended to simulate real
biological ecosystems. The ecosystem is viewed as a dy-
namic, complex system, essential for selection and a driv-
ing force behind biological novelty when established with
the appropriate conditions. We would like to harness the
novel potential of ecosystem processes at a metaphoric
level and apply them to creative processes of interest to
humans.

4.1 Simulated Ecosystem Studies

Simulated artificial ecosystems have been well studied in
the sciences. A number of artificial life models employ the
concept of an abstract or simplified ecosystem. This con-
cept of the artificial ecosystem was introduced in (Con-
rad and Pattee, 1970). A population of independent soft-
ware agents interact within a programmer-specified artifi-
cial physics and chemistry. Agent interaction is simplis-
tically analogous to that which occurs in a real ecosys-
tem. Agents must gain sufficient resources from their en-
vironment in order to survive and reproduce. Typically,
a number of successful survival strategies will emerge
(niches) often with inter-dependencies between individual
species (e.g. symbiosis and parasitism). Similar artificial

Computational Creativity 2007

131

ecosystem methods have been useful in modelling prob-
lems in economics (Arthur et al., 1997), ecology (Mitchell
and Taylor, 1999) and social science (Epstein and Axtell,
1996).

The majority of such systems focus on single-niche,
homogeneous environments, and operate at evolutionary
time-scales, simulating the evolution a single species over
time. This focus, and the use of minimal, broad assump-
tions is primarily for the purposes of verification and val-
idation (Adami, 2002). Artificial life agents adapt their
behaviour through an evolutionary process to best fit their
(typically homogeneous) environment.

Ecological models, on the other hand, tend to oper-
ate on far smaller time scales, simulating periods typi-
cally ranging from hours to several decades, with a focus
on fitness seeking through organisational changes or be-
havioural adaptation of an individual species. This level of
simulation reflects the practical questions asked by ecolo-
gists in relation to real ecosystems, whereas artificial life
research tends to focus on abstract evolutionary dynam-
ics. Important to both styles of investigation is the emer-
gence of macro phenomena or properties from micro in-
teractions. The micro interactions (typically interacting
agents) being formally specified in the model; the macro
properties an emergent outcome of the simulation.

4.2 Processes for Artificial Ecosystems

In many artificial ecosystem models, the designers of the
model are driven by specific applications or outcomes, so
the mechanisms, abstractions and terminology differ be-
tween systems. This section attempts to define both prop-
erties and concepts for general artificial ecosystems. They
are positioned at a “middle level” of abstraction: for ex-
ample an individual is an indivisible unit, it is not repre-
sented as a combination of self-organising sub-units, even
though this might be possible. In any agent or individual-
based model there is always a conflicting tension between
model complexity, model validation and simulation out-
comes. In contrast to ecological models, the focus of cre-
ative discovery is on the suitability and sophistication of
creative outcomes, not the verification of models with em-
pirical data or their validation in terms of answering ques-
tions not explicit in the original model (Grimm and Rails-
back, 2005). This allows us some creative licence in our
interpretation, but we would still hope for some (at least)
semi-formal validation of any general ecosystem models
for creative discovery.

While not an essential characteristic of ecosystem
models, the use of evolution and the operation on evo-
lutionary time scales is an assumption of the ecosystem
models proposed here. This does not preclude the possi-
bility of the model operating at other time scales.

The basic concepts and processes for artificial ecosys-
tems are:

• the concepts of genotype and phenotype as used in
standard EC algorithms. A genotype undergoes a
process of translation to the phenotype. The geno-
type and phenotype form the basis of an individual
in the model;

• a collection of individuals represent a species and the

system may potentially accommodate multiple, inter-
acting species;

• spatial distribution and (optionally) movement of in-
dividuals;

• the ability of individuals to modify and change their
environment (either directly or indirectly as a result
of their development within, and interaction with, the
environment);

• the concept of individual health as an abstract scalar
measure of an individual’s success in surviving
within its environment over its lifetime;

• the concept of an individual life-cycle, in that an in-
dividual undergoes stages of development that may
affect its properties, physical interaction and be-
haviour;

• the concept of an environment as a physical model
with consistent physical rules on interaction and
causality between the elements of the environment;

• an energy-metabolism resource model, which de-
scribes the process for converting energy into re-
sources that may be utilised by species in the envi-
ronment to perform actions (including the production
of resources).

For populations to evolve, there must be some kind of
selection pressure that implicitly gives some species a
higher reproduction rate than others, creating an implicit
measure of fitness (Nowak, 2006, Chapter 2). Let us as-
sume any given environment has finite resources and a to-
tal population carrying capacity, κ. Species compete for
finite resources. These resources are used by individuals
to better their reproductive success, until the total popu-
lation reaches κ. Hence, those able to discover success-
ful strategies for efficiently exploiting those resources are
able to reproduce at a higher rate, dominating the popula-
tion. In contrast to EAs with explicit fitness functions,
selection is implicit: successful strategies (individuals)
emerge in response to the challenges set by the environ-
ment. Moreover, in locating and processing resources,
species may alter the environment itself. In this case,
adaptation is a dynamic process involving feedback loops
and possibly delicate balances.

Individuals maintain a scalar measure of “health”
which indicates the success of the individual during its
lifetime. This is roughly akin to a fitness measure in tra-
ditional EC algorithms. If the health level of an individ-
ual falls to zero, the individual dies and is removed from
the population (normally returning its resources to the en-
vironment). Health is normally affected by the individ-
ual’s ability to acquire resources from the environment
(which may include other individuals). Other internal fac-
tors, such as age, may also change an individual’s health
measure.

In the context of problem solving, individual species
may represent competing or co-operating parts of a global
solution. This is highly suitable when many different
combinations of components may form equally good so-
lutions (e.g. notes or phrases forming a musical composi-
tion). When using standard EC methods for search or op-
timisation, the challenge faced is in choosing appropriate

Computational Creativity 2007

132

1 . . .2 3 4 5 6 7 8 9 10 11 12 13 n-3 n-2 n-1 n cells

resources

individuals

histogram

resources
added based
on histogram
distribution

H S L wl wr ws wg
genome

colour colour weights
left, right, self

growth
weight

age health R width H S V
state

individual

. . .

. . .

Rt = f(Ht)

Figure 2: Schematic overview of Colourfield

genotype representations, selection methods, and þtness
functions. The challenge for artiþcial ecosystems is in
the design of environments and the interaction of species
within them.
Anexampleofasimpleartiþcialecosystemmodelfol-

lows.

4.3 Colourþeld

Colourfield is a simple one-species ecosystem of colour
patterns. It consists of a one-dimensional discrete world
of þxed width, populated by individuals (Fig. 2). Each
space in the world is called a cell and may be occupied by
at most one individual. Individuals occupy one or more
cells and are represented visually as lines of colour. A
populationofindividualsproducesaþeldofoneormore
colours.
Anindividualõsgenomeisaþxed-lengtharrayofreal

numbers representing: the natural colour (hue, satura-
tion, lightness: HSL); propensity to change to the natural
colour, and to the colour of the individual to the left and
right of this individual (a normalised weight); propensity
togrowintoemptyneighbouringcells. Eachindividualin
the population maintains a separate state, which consists
of: the age of the agent, health, current resources held,
number of cells currently occupied, and current colour.

All individuals begin with no colour (black) and at-
tempt to acquire resources to reach their target colour (a
weighted sum, as determined by the genome, of the nat-
ural colour and the current colours of neighbours). Re-
sources are required to change and maintain a particular
colour, proportionate to the rate of change. If a neigh-
bouring cell is empty, the individual may “grow” into that
cell, the propensity to grow determined by the genome.
The more cells occupied, the more resources are required
to change colour, but the greater the contribution to the
overall colour histogram of the world (detailed shortly).

Let the current colour of individual i in RGB colour
space be the vector Ci = (ri, gi, bi) and the width wi.
The resources required by the individual are:

ri = w2i

k0 + k1 log

d||Ci||

dt

+ k2

dwi

dt
,

where k0, k1and k2 are constants.
Individuals receive resources from the environment

via a feedback process based on the composition of the
world. At each timestep, a histogram of chroma and in-
tensity values for the world is built. This histogram, Ht

is used as a basis for delivering resources to the world.
A total resource Rt for the timestep t, is calculated via a
function f : Rn → R:

Rt = f(Ht)

and then distributed equally to all the cells in the world,
e.g.:

rk,t+1 = rk,t +
Rt

n
, k = 1, 2, . . . , n

where n is the size of the world. Individuals that occupy
more cells therefore receive a greater amount of resources,
as they make a greater contribution to the histogram.

A number of different versions of the function f have
been tested. These include: favouring chroma values with
peaks at equal division, maximising chroma or intensity
variation; matching a normal distribution; matching his-
tograms based on paintings recognised for their skilful use
of colour.
Given sufþcient resources, and following a period of

“growth” an individual may reach its desired colour and
width (which may be dependent on the individual’s neigh-
bour states). At this time, it may choose to reproduce,
either by crossover with an immediate neighbour, or — if
there are no neighbours — by mutation. In the case of two
immediate neighbours, the mating partner is selected with
probabilityweightedtothenormalisedEuclideandistance
between the colour of the individual and its neighbours, so
individuals are more likely to mate with others who pro-
duce colours similar to themselves. Offspring are placed
in the nearest empty cell, or if none exists, they replace
parent cells. If there are insufþcient resources, the agent
is unable to maintain its target colour, causing it to fade
and eventually die.

Over time, the system evolves to maximise the pro-
duction of resources according to the composition of the
histogram, which is determined by the size and colour
of all the individuals in the world. The system exhibits
novel colour patterns with patterns of stasis followed by
large-scalechangeasnewoptimalconþgurationsaredis-
covered. Due to the conþguration of co-dependencies,
Colourfield exhibits classic ecosystem phenomena such
as parasitism (a rogue colour contributing little to re-
source production but “feeding off” other resource pro-
ducing colours) and mutualism (co-operative combina-
tions of colours mutually contributing to high resource
production).

Colourfield is a simple experiment in adapting ecosys-
tem concepts to a simple creative system. It demonstrates
creative discovery in a limited domain (creative relation-
shipsbetweenþeldsofcolour).

Computational Creativity 2007

133

4.4 ToolsandEcosystems

The concept of an ecosystem as a mechanism for cre-
ative discovery is not limited to the simulation of ecosys-
tems within the computer. In a creative context it is use-
ful to consider human-machine interaction as forming an
ecosystem, replacing the concept of machine as creative
tool. This discussion is similar to that used by Di Scipio
(2003) and the approach used in the design of the Eden
system,discussedinSection4.5.

Humans have always worked with tools. Physical
tools are useful because: (i) they enable a manipulation
of the environment (a chisel sculpts wood); (ii) their con-
straints focus the user to their proper function (a pencil is
used for drawing on surfaces); and (iii) their organisation
encompasses knowledge (we cannot imagine in our mind
the correct positioning of a slide rule to evaluate the mul-
tiplication of two numbers, yet by physically using a real
slide rule it is easy).

Today, computer use is widespread in many areas of
creative production, but this use is almost exclusively in
the role of “computer as a tool”. Moreover, many of
the metaphors used by software tools borrow from phys-
ical counterparts or historical lineage (e.g. Adobe Photo-
shop is a “digital darkroom”, Paint programs use a “vir-
tual paint brush”, etc.). Often these metaphors are poorly
translated or simply lack the physicality of their real coun-
terparts (playing a “virtual piano” is just not as good as the
real thing).

COMPUTER

analysis composition

interpretation

OUTPUT
sound or image

response

USER
gesture or

intent

computer as tool

COMPUTER

evolution

control
signals

processing

self-
observation

noise

user
output

medium

environment

sensors

ecosystem: system + environment

Figure 3: Computer use as a tool (top) and as part of an
ecosystem (bottom)

The ecosystem approach does not conceptualise the
machine as an object. Rather, the processes, both internal
and external, are conceived as interdependent, connected
components, which self-organise into a system. Compo-
nents innately seek to replicate themselves within a noisy
environment. With a limited carrying capacity, those com-

ponentsbestabletoþttheenvironmentdominatethepop-
ulation.

When the system interacts with the environment, it
forms an ecosystem. The environment is the medium
in which the system develops, and in a creative context
may be the creative medium itself (e.g. sound, light, 3D
form, and so on). In this mode of working, interdependent
processes form an evolutionary, dynamical system, with
adaptive behaviour to environmental conditions including
the ability to interfere with, and modify, the environment.
The machine becomes a synergistic partner in a collabo-
rative creative process, as opposed to a passive tool ma-
nipulated by a user. As shown in Fig. 3, the computer,
the physical environment and the user all form part of a
coupled feedback system.

The powerful properties of tools outlined above are
still preserved in the ecosystems scenario, along with ad-
ditional features not normally associated with the human
creative use of tools:

1. Manipulation of the environment: components are
able to manipulate their environment, moreover due
totherecursivecoupling(Ashby,1952)betweensys-
tem and environment we gain additional properties
such as homeostasis (the ability for self-maintenance
ofparticulardynamicconþgurationsinchangingex-
ternal conditions) and system ‘memory’ through en-
vironmentalmodiþcation.

2. Constraints are created by the environment: evo-
lutionary adaptations are þtness seeking, leading to
novel solutions imposed by the constraints, not de-
termined by explicit þtness functions as is the case
with conventional ECmethods.

3. Organisation encompasses knowledge: the dynamic
conþguration of system components represents the
knowledge of the system. As this conþguration is
dynamic and adaptive, the system is able to ‘learn’.

We are interested in new properties and interactions
being indirectly implemented: arising as emergent by-
products of carefully designed interdependencies between
system components.

There are three important considerations in this inter-
active ecosystem approach to creativity: (i) the design of
the individual system components and their interdepen-
dencies; (ii) the metaphors used in interpreting the func-
tion of components and their dependencies; and (iii) the
composition of the environment in which the system in-
teracts. A careful analysis of these considerations remains
on-going research.

4.5 Eden: anevolutionarysonicecosystem

Eden is a artwork installation that makes extensive use of
the concepts discussed in this paper. The details presented
here focus on the ecosystem aspects of the work. For
detailed technical descriptions, see (McCormack, 2001,
2005a).
The work consists of a complex artiþcial ecosystem

running in real-time on a two-dimensional lattice of cells.
This world is projected into a three-dimensional environ-
ment,approximately6mx6m(seeFig.4).Theecosystem

Computational Creativity 2007

134

Figure 4: Installation view of Eden

consists of three basic types of matter: rocks, biomass,
and evolving agents. If a rock occupies a cell, agents or
biomass may not. Agents attempting to move into a cell
occupied by a rock will “feel” pain and suffer energy loss.

Biomass provides a food source for the agents.
Biomass is modelled on an extended Daisworld model
(Lenton and Lovelock, 2001), with growth rate, βi for in-
dividual biomass element i, a Gaussian function of local
temperature at the location (x, y) of the element, Tx, y:

βi = e−0.01(22.5−Tx,y)2 .

The Eden world exists on an imaginary, Earth-like planet,
orbiting a sun with a period of 600 days. The orbit ec-
centricity and polar orientation result in seasonal varia-
tions of temperature, thus affecting biomass growth. As
with Lenton and Lovelock’s model, the system exhibits
self-regulation and stability under a range of conditions.
However, overpopulation by agents may reduce biomass
to negligible levels, resulting in a temperature increase.
The increased temperature lowers the growth rate of the
biomass, leading to agent extinction and a dead planet.
The system detects such conditions, at which time the
planet is “rebooted” to initial conditions and a fresh batch
of agents and biomass seeded into the world.

Agents are oriented, omnivorous, autonomous, mobile
entities with a collection of sensors and actuators con-
trolled by a learning system, based on classifier systems
(a version of Wilson’s XCS (Wilson, 1999)). Agents are
able to metabolise biomass into energy, which is required
to perform actions via the agent’s actuators. Possible ac-
tions include: eating, resting, moving, turning left or right,
singing, attacking whatever occupies the cell in front of
the agent, mating. The energy cost of these actions varies
according to the action (attacking costs more energy than
resting, for example), and to physical factors, such as the
mass of the agent (mass also increases the power of at-
tacking — a big, heavy agent is more likely to injure or
kill a smaller agent). If an agent’s energy (health) level
falls to 0, the agent dies. Dead agents may be eaten by
other agents for a certain time period following death.

Agent sensors are both internal (enabling introspec-
tion) and external (enabling sensation of the environ-
ment). They include: sensation of cell contents within
the Moore neighbourhood of the agent; sound intensity

and frequency arriving at the agent’s location according
to a simple physical model; introspection of pain; intro-
spection of low energy (health). The LCS evolves sets of
rules based on past experience and performance of suc-
cessful rules. At regular periods the agent’s health and re-
source acquisition differentials are examined and a credit
or penalty is provided to those rules used since the pre-
vious evaluation. A positive differential pays credit pro-
portional to its magnitude, likewise a negative differential
penalises. Successful rules gain credit and so are more
likely to be selected in the future. Rules that consistently
receive penalty are eventually removed.

Rules evolve during an agent’s lifetime, with a penalty
imposed on energy for large rule sets to encourage effi-
ciency. Two agents may mate — the resultant offspring
inherit the most successful rules of their parents, hence
the system uses Lamarkian evolution.

The Eden environment is visualised and sonified in
the installation space. The two-dimensional world is pro-
jected onto two translucent screens, configured in an ‘X’
shape. This enables people experiencing the work to move
freely around the screens at close range, examining details
of the world as it updates in realtime. The sounds made
by the agents are spatially mapped to four speakers located
at the two corners of each screen. This rough spatialisa-
tion permits the listener to approximately locate the sound
source within the Eden world. The bandwidth devoted to
sound is much higher than any other sensory information
used by the agent. Agents are able to differentiate and
make sound over a range of frequency bands, giving rich
opportunities for the use of sound in an ecosystem context.

In addition to the internal ecosystem model, the Eden
world is also connected to the physical world of the instal-
lation space via an infrared video camera which tracks the
presence and motion of people looking and listening to the
artwork2. The presence of people in the installation space
influences the growth of biomass in the virtual space. The
longer people spend with the work, the more food is likely
to grow in the virtual environment. The rationale for this is
driven by the idea that the more interesting people find the
work, the longer they will stay. If they find the work un-
interesting, they will not spend much time with it. A good
way to maintain people’s interest is to produce sounds,
moreover, interesting, changing sounds.

Over time, the agents evolve to make complex sounds
in order to maintain their food supply. The agents have
no specific knowledge of people in the environment, how-
ever, by making interesting combinations of sounds they
attract and maintain the interest of the human audience in
the environment3. This interest translates to a more stable
supply of food, hence improving chances of survival in
the environment. Therefore, Eden is a symbiotic ecosys-
tem, which includes the human audience experiencing the
work.

2The original version of the work used infrared distance sen-
sors.

3When shown in a gallery environment, it is important to re-
member to compensate for opening hours, otherwise the popula-
tion dies out each night when the gallery is closed!

Computational Creativity 2007

135

5 Conclusions

In contrast with previous attempts to model creativ-
ity, which have applied psychological, cognitive, or
knowledge-based models of human creativity, the ecosys-
tem approach sees creativity as an emergent phenomenon
of dynamic interaction between interconnected, self-
organising components and their environment. These
components and their environment may be internal to
computer simulation (as in the Colourfield system) or part
of a system that incorporates humans and the physical en-
vironment (as with the Eden system).

Combinatorial systems do not practically impose the
limitations that might be suggested by the opposing con-
cepts of combinatoric and creative emergence. Necessar-
ily, all base primitives must contain an interpretation that
lies outside the software itself. What is important is the
process used to derive a creative result from a set of base
primitives. The goal is to enable the synergistic explo-
ration of new conceptual spaces in creative partnership
with the machine. In the artificial ecosystem approach,
this can be achieved by developing a formal understand-
ing of the appropriate design of components, their inter-
connections, and the environment in which they operate.

References

Adami, C. (2002). Ab initio modeling of ecosystems with
artificial life. Natural Resource Modeling, 15:133–146.

Arthur, W. B., Durlauf, S., and Lane, D. A., editors
(1997). The economy as an evolving complex system
II. Addison-Wesley, Reading, MA.

Ashby, W. R. (1952). Design for a Brain. Chapman &
Hall, London.

Baas, N. A. (1994). Emergence, Hierarchies and Hyper-
structures. In Langton, C. G., editor: Artificial Life III,
515–537. Addison-Wesley, Reading, MA.

Bird, J. (2004). Containing Reality: Epistemological Is-
sues in Generative Art and Science. In Impossible Na-
ture: the art of Jon McCormack, 40–53. Australian
Centre for the Moving Image, Melbourne.

Birkhoff, G. D. (1933). Aesthetic Measure. Harvard Uni-
versity Press, Cambridge, MA.

Cariani, P. (1991). Emergence and Artificial Life. In
Langton, C. G. et. al., editors: Artificial Life II,
SFI Studies in the Sciences of Complexity, 775–797.
Addison-Wesley, Redwood City, CA.

Cariani, P. (1997). Emergence of new signal-primitives in
neural systems. Intellectica, 2:95–143.

Conrad, M. and Pattee, H. H. (1970). Evolution experi-
ments with an artificial ecosystem. Journal of Theoret-
ical Biology, 28:393.

Dartnall, T., editor (2002). Creativity, Cognition, and
Knowledge: An Interaction. Praeger, Westport, Con-
necticut.

Di Scipio, A. (2003). ‘Sound is the interface’: from in-
teractive to ecosystemic signal processing. Organised
Sound, 8(3):269–277.

Dorin, A. (2001). Aesthetic fitness and artificial evo-
lution for the selection of imagery from the mythical
infinite library. In Kelemen, J. and Sosı́k, P., edi-
tors, Advances in Artificial Life, LNAI 2159, 659–668.
Springer-Verlag, Berlin.

Dorin, A. and McCormack, J. (2002). Self-Assembling
Dynamical Hierarchies. In Standish, R. K., et. al. edi-
tors: Artificial Life VIII: Proceedings of the Eight Inter-
national Conference on Artificial Life, 423–428. MIT
Press, Cambridge, MA.

Eiben, A. E. and Smith, J. E. (2003). Introduction to
Evolutionary Computing. Natural Computing Series.
Springer, Berlin.

Epstein, J. M. and Axtell, R. (1996). Growing Artificial
Societies. MIT Press, Cambridge, MA.

Grimm, V. and Railsback, S. F. (2005). Individual-based
Modeling and Ecology. Princeton Series in Theoret-
ical and Computational Biology. Princeton University
Press.

Lenton, T. M. and Lovelock, J. E. (2001). Daisyworld re-
visited: quantifying biological effects on planetary self-
regulation. Tellus, 53B(3):288–305.

McCormack, J. (2001). Eden: An evolutionary sonic
ecosystem. In In Kelemen, J. and Sosı́k, P., edi-
tors, Advances in Artificial Life, LNAI 2159,133–142.
Springer-Verlag, Berlin.

McCormack, J. (2005a). On the Evolution of Sonic
Ecosystems. In Adamatzky, A. and Komosinski, M.,
editors: Artificial Life Models in Software 211–230.
Springer-Verlag, London.

McCormack, J. (2005b). Open problems in evolutionary
music and art. In Rothlauf, F. et. al. editors, EvoWork-
shops, LNCS 3449, 428–436. Springer, Berlin.

Michalewicz, Z. and Fogel, D. B. (1999). How to solve it:
modern heuristics. Springer, New York.

Mitchell, M. and Taylor, C. E. (1999). Evolutionary com-
putation: An overview. Annual Review of Ecology and
Systematics, 30:593–616.

Nowak, M. A. (2006). Evolutionary Dynamics: exploring
the equations of life. The Bekknap Press of Harvard
University Press, Cambridge, MA, and London, Eng-
land.

Swenson, W., Wilson, D. S., and Elias, R. (2000). Artifi-
cial ecosystem selection. PNAS, 97(16):9110–9114.

Takagi, H. (2001). Interactive evolutionary computation:
Fusion of the capabilities of ec optimization and human
evaluation. Proceedings of the IEEE, 89:1275–1296.

van Langen, P. H. G., Wijngaards, N. J. E., and Brazier,
F. M. T. (2004). Towards designing creative artificial
systems. AIEDAM, Special Issue on Learning and Cre-
ativity in Design, 18(4):217–225. A. H. B. Duffy and F.
M. T. Brazier (editors).

Wilson, S. W. (1999). State of XCS classifier system re-
search. Technical report, Concord, MA.

Computational Creativity 2007

136

Towards a General Framework for Program Generation in Creative Domains

Marc Hull
Department of Computing

Imperial College
180 Queen’s Gate

London
SW7 2RH

mfh@doc.ic.ac.uk

Simon Colton
Department of Computing

Imperial College
180 Queen’s Gate

London
SW7 2RH

sgc@doc.ic.ac.uk

Abstract
Choosing an efficient artificial intelligence approach for
producing artefacts for a particular creative domain can
be a difficult task. Seemingly minor changes to the solu-
tion representation and learning parameters can have an
unpredictably large impact on the success of the process.
A standard approach is to try various different setups in
order to investigate their effects and refine the technique
over time.

Our aim is to produce a pluggable framework for ex-
ploring different representations and learning techniques
for creative artefact generation. Here we describe our ini-
tial work towards this goal, including how problems are
specified to our system in a format that is concise but still
able to cover a wide range of domains. We also tackle
the general problem of constrained solution generation by
bringing information from the constraints into the gener-
ation and variation process and we discuss some of the
advantages and disadvantages of doing this. Finally, we
present initial results of applying our system to the do-
main of algorithmic art generation, where we have used
the framework to code up and test three different repre-
sentations for producing artwork.

Keywords: Automatic program generation, genetic pro-
gramming, evolutionary art.

1 Introduction
Finding an efficient approach for producing artefacts in
a particular creative domain is often more of an art than
a science. Many general artificial intelligence techniques
exist that could potentially be used with varying degrees
of success, but most are so complex that it can be dif-
ficult to tell in advance which will perform better than
others. They are also heavily dependent on the problem
representation used and a number of other parameters that

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

can greatly affect their performance. Typically this can be
alleviated by using knowledge of the problem to predict
which search strategies will be most successful. However,
in creative domains the problem may not be well-defined
enough to be an accurate guide.

Our aim is to build a general, pluggable framework
where problems can be expressed using a concise syntax
and tested with all of the different artificial intelligence
techniques written for the system. In this paper, we ad-
dress the problem of how the user specifies a search space
to our system. To cover a wide range of domains and
learning techniques, the representation used must be gen-
eral enough to cover many different data structures, but
not too general as to include invalid solutions in the search
space. To achieve this, we opted for a tree-based struc-
ture, similar to those used in Genetic Programming, with
implicit type rules controlling the shape of the tree and
explicit constraints to disallow particular node patterns.
In later work, we hope to concentrate on evaluating dif-
ferent search strategies and attempting to define classes of
domains for which particular techniques work best.

In section 2 we provide the background to our project
by describing existing genetic programming tools and
some of their applications to creative artefact generation,
against which we compare our approach. In section 3
we provide details of the framework in terms of how we
split the specification of problems into three concise parts,
which enables quick, flexible prototyping of different rep-
resentations. In section 4 we describe how solutions are
generated via an iterative two-stage process that employs
explicit user-given constraints about the nature of the pro-
grams to be generated in order to avoid producing invalid
solutions.

To demonstrate the potential of the framework for pro-
ductive generation of programs, we have implemented an
evolutionary search mechanism where the user acts as a
fitness function (a standard approach), and we have ap-
plied it to algorithmic art generation. Using the concise
problem specification syntax we were able to quickly pro-
totype three different representations for generating pro-
grams that produce artwork when executed, namely colour
based, particle based and image based approaches. Fi-
nally, in sections 6 and 7, we describe the future work
planned for the framework and summarise our conclu-
sions drawn so far.

Computational Creativity 2007

137

2 Background
Genetic Programming was first popularised by Koza’s
1992 book (Koza, 1992) as a way to find programs that
optimise a measure of fitness. By manipulating variable-
length parse trees that represent Turing-complete pro-
grams, it is sufficiently general to be able to represent
solutions from many other machine learning techniques
(Banzhaf et al., 1998). Many tools and libraries exist
for using this technique to evolve programs or program
fragments to perform particular tasks, e.g. DGPF (Weise
and Geihs, 2006), the Genetic Programming Engine1 and
GALib2. Typically, these allow the user to specify a rep-
resentation containing the ingredients (terminals and non-
terminals3) to be used in the solutions. The user also sup-
plies a fitness function that evaluates each solution, re-
turning a numeric result indicating its suitability for per-
forming the task. To start with, a set of random solutions
are generated using the given representation and these are
then evaluated by the fitness function to determine which
perform better than others. Roughly speaking, the best
performing solutions are then combined with one another
in an attempt to form new solutions that produce a higher
value when evaluated by the fitness function. This process
is then repeated until the required minimum fitness value
is exceeded, at which point the solution with the highest
fitness value is taken as the final solution.

In the pure GP approach, solutions can be constructed
using any combination of terminals and non-terminals
provided in the representation. However, often this results
in solutions being produced that are not valid in the con-
text of the problem. A simple example is a problem that
requires a permutation of values, where any solution that
contains the same value twice would be invalid.

A standard GP approach would still allow such in-
valid solutions to exist, but one remedy to this is to apply
additional constraints to the representation to explicitly
remove certain terminal and non-terminal combinations
from the search space. This then leads to the problem of
constrained solution generation and variation, where the
technique used for producing and altering solutions must
take the constraints into account in order to avoid invalid
solutions.

Several approaches for handling constraints in evolu-
tionary techniques have been tested, with the most no-
table being penalty functions, repair functions and de-
coder functions. Penalty functions (Baeck et al., 1995)
evaluate solutions against each constraint individually and
subtract a value from their fitness for every constraint vi-
olated. Repair functions (as used in Michalewicz and
Nazhiyath (1995)) allow solutions that violate constraints
to be generated, but then modify these solutions in an at-
tempt to find the most similar variant that passes all of
the constraints. Decoder functions (as in Gottlieb and
Raidl (2000)) are employed during the genotype to phe-

1A genetic programming library for the .NET framework
(http://gpe.sourceforge.net/)

2A C++ library of genetic algorithm components
(http://lancet.mit.edu/ga/)

3These are described as terminals and functions in Koza
(1992), but we use the term non-terminal here to distinguish
from functions in programs.

notype mapping phase and ensure that the solution geno-
type maps on to a phenotype in which all constraints will
always be satisfied.

Constraint handling is particularly appropriate when
the solution phenotype is a computer program in a high-
level language, since such languages often impose many
complex constraints such as scoping rules and type com-
patibility upon their programs. Strongly Typed Genetic
Programming helps to alleviate some of these problems
by allowing the representation itself to be typed and then
modifying the generation and evolution algorithms to only
produce type-safe trees (Montana, 1995). However, this is
often achieved by tying the GP system to a particular lan-
guage, such that the rules of that language are implicit in
the representation (as in JGAP4).

Genetic Programming has also previously been used
to evolve programs that produce artefacts from creative
domains such as pictures and music. Machado and Car-
doso’s NEvAr system (Machado and Cardoso, 2002) is a
well-known generator of algorithmic art which evolves an
algorithm for setting the red, green and blue colour com-
ponents of each pixel in an image. Johanson and Poli have
applied a similar technique to music generation (Johanson
and Poli, 1998). Their system produces programs in a cus-
tom language that describes how to play chords and when
to pause between notes. Many other systems also use au-
tomatic program generation to produce creative artefacts,
however a full survey of these is beyond the scope of this
paper.

3 Framework Details
Our aim is to provide a framework that is general enough
to accept problems from a wide range of different do-
mains, yet concise enough to allow for quick prototyping
and easy modification. We have chosen a variable-sized
tree representation to encode solutions, similar to those
used in Genetic Programming, since this is sufficiently
general to also encode representations used in other ma-
chine learning approaches. However, an overly general
representation would include solutions in the search space
that may not be valid solutions to the problem being
solved. Hence, the framework must also allow users to
easily constrain their representations to remove invalid so-
lutions for specific problems.

To allow users to specialise their representations, we
use a combination of node type constraints upon our parse
trees and logical constraints for removing unwanted node
patterns. The former is based upon the constraints of
Montana’s Strongly Typed Genetic Programming system
(Montana, 1995) and allows the type systems of program-
ming languages to be respected. Meanwhile, the latter
allows for constraints over node dependencies to be ex-
pressed. This can, for instance, be used to enforce that
instances of two node types may only exist together and
not independently. We have found this to be particularly
useful for expressing relationships between function calls
and function declarations when evolving programs.

Finally, we also provide a method for translating the

4An open-source, Java-based genetic algorithms package
(http://jgap.sourceforge.net)

Computational Creativity 2007

138

tree structure used internally to represent solutions into
text output, which is analogous to the genotype-phenotype
mapping in Genetic Programming. In our experiments, we
use this to convert our solutions into programs, scripts or
data that can be accepted by other programs. We then use
the behaviour of these programs to evaluate the success of
the solution.

To keep the roles of specifying the representation, im-
posing constraints and compiling solutions to text sepa-
rate, users provide each of these to our system in a sep-
arate file. The following subsections explain how these
files work in further detail.

3.1 Representation File

Solutions in our current system are represented by trees
whose structure is specified by the user in the representa-
tion file. At a basic level, this file allows the non-terminal
and terminal node types of the tree to be specified, in a
similar way to most other Genetic Programming systems.
However, these node types are also involved in typing
constraints that allow the structure of the trees to be con-
trolled.

These typing constraints allow the terminals and non-
terminals of the representation to exist in an inheritance
hierarchy, such that groups of node types that are seman-
tically linked (e.g. True, False, And, Or) can inherit
from a common node supertype (e.g. Boolean) that rep-
resents this link. Each non-terminal node type then speci-
fies which arcs it has to each of its child nodes, and also in-
herits any arcs declared in its supertypes. Each arc is also
annotated with node types that restrict the nodes that can
be children of it. An arc annotated with a node type X will
only accept child nodes that are instances of the X type or
any types that inherit from X. Additional features such as
abstract node types, primitive types and multi-child arcs
are also supported but there is insufficient space here to
describe them in detail.

The following shows an example of the syntax used to
specify a representation for simple numeric expressions.

representation NumericExpressions {
abstract type NumericExpression;
type Zero : NumericExpression;
type One : NumericExpression;
type Two : NumericExpression;
abstract type BinaryOperator

: NumericExpression {
NumericExpression left;
NumericExpression right;

};
type Add : BinaryOperator;
type Sub : BinaryOperator;
type Mul : BinaryOperator;
type Div : BinaryOperator;

};

3.2 Constraints File

In addition to the implicit typing constraints provided in
the representation file, the user can also specify explicit
constraints upon the solution trees in the constraints file.

Since the system is not tailored to output in a specific lan-
guage, this file can be used to add constraints that are spe-
cific to the output language for this particular problem. It
can also be used to add domain-specific constraints, which
in the case of program generation could remove a large
proportion of non-compiling and invalid solutions from
the search space.

Constraints are currently expressed in a syntax that is
based upon first-order logic, but is tailored to expressing
conditions about tree structures. The language includes
and, or and not operators, which follow their traditional
logical semantics, as well as exists and all operators
that have special meanings. In particular, they only match
nodes at or within a particular part of the tree, and they can
optionally bind these matches to variables that are then
used in the evaluation of their sub-expressions.

The following shows how this syntax can be used to
express the constraint that Div nodes cannot have Zero
nodes for their right children in the representation from
Section 3.1.

constraint NoDivideByZero {
all Div in root as divideNode (
not (
exists Zero at
divideNode.right

)
)

};

3.3 Compiler File

Once a solution tree has been generated, the compiler file
is consulted for the transformations required to convert the
tree into the specified output language. The user provides
these transformations as string templates for each node
type which describe how nodes of that type should be rep-
resented in the output. The string templates are specified
in the Velocity templating language5, so that references
to the compiled output of child nodes are represented by
enclosing the child name between ${ and } delimiters.
This also allows the templates to include control flow con-
structs like for loops over node children.

The following gives the compiler code for translating
the numeric expression representation from Section 3.1
into C-style expression syntax.

compile Zero [|0|];
compile One [|1|];
compile Two [|2|];
compile Add [|(${left})+(${right})|];
compile Sub [|(${left})-(${right})|];
compile Mul [|(${left})*(${right})|];
compile Div [|(${left})/(${right})|];

4 Constraint Handling
In section 2 we highlighted three existing methods for
handling constraints in evolution-based systems; penalty
functions, repair functions and decoder functions. For our

5An open-source, Java-based string template language
(http://velocity.apache.org/)

Computational Creativity 2007

139

system, we have tried a new approach to constraint han-
dling, in which information concerning the constraints is
used to guide the initial process of solution generation,
then constraint-aware variation operators are used to pro-
duce only valid children.

To guide the generation and variation operators, we
use an approach that attempts to determine whether the
tree being modified violates the constraints either directly
or indirectly. A direct violation is where the nodes in the
tree contradict at least one of the constraint conditions,
whereas an indirect violation is where a partial tree6 re-
stricts the possible nodes that can be placed to only those
that will contradict at least one of the constraint condi-
tions. To make this problem tractable, the constraint lan-
guage was restricted to only a small number of operators,
which allowed us to hard-code a number of routines that
were able to reason about the constraints at the sacrifice of
losing Turing-completeness of the language. The follow-
ing subsections cover the algorithms used for guiding the
generation and variation of trees in further detail.

4.1 Solution Generation

Solutions are generated using an iterative two-stage pro-
cess of checking which possible valid node instantiations
can be made and then choosing one based on knowledge
of previous good solutions. To start with, the generator
component takes a partial tree as input, so to generate a
tree from scratch a root node must first be instantiated and
passed to the generator. As the first step, the generator sets
all unset arcs to point to placeholder nodes and then adds
all possible combinations of placeholder nodes and their
type-compatible node types to a list of possible choices
that can be made. The generation process then proceeds
as follows:

• The tree constraints are evaluated with respect to the
nodes currently in the tree to produce the constraints
that must be satisfied by the remaining nodes to be
added.

• Each of the possible choices is checked against the
constraints and is removed if they would directly or
indirectly violate them.

• If there is a placeholder for which there are no re-
maining possible choices, the algorithm backtracks.

• Otherwise, one of the choices is picked at random, its
node type is instantiated and its corresponding place-
holder is replaced with the new node instance. All
alternative choices for that placeholder are then re-
moved from the list of possible choices. All children
of the new node are set to placeholder nodes and all
combinations of the new placeholders and their type-
compatible node types are added to the list of possi-
ble choices to be made.

• If there are no placeholders in the tree, the algorithm
terminates, otherwise it repeats from step one.

6A partial solution tree is a tree where some branches end in
non-terminal nodes rather than terminal nodes, and so some arcs
have yet to be assigned child nodes.

4.2 Solution Improvement

Currently, we use minor variations on traditional GP tech-
niques of crossover and mutation to produce new solutions
from previous ones, with the initial population generated
using the above algorithm of constrained random genera-
tion.

For crossover between two trees, T1 and T2, we ran-
domly select a node N1 from the first tree which deter-
mines its crossover point, but then we filter the nodes
in the second tree by those that would form a type-
compatible tree when interchanged with N1. A node N2

is then randomly chosen from this filtered list and the sub-
tree rooted at N1 in T1 is swapped with the subtree rooted
at N2 in T2. The tree constraints are then checked and,
if violated, the swap is undone and N2 is removed from
the list of filtered nodes and another node is chosen. If
no valid replacement node for N1 can be found, a new
crossover point is chosen in T1. Mutation of a single tree
is handled by randomly selecting a node N1, removing
the subtree rooted at N1 and then passing the tree to the
generator to fill in the gap.

4.3 Violation Detection

In this approach, the ability to reason about the constraints
in order to predict which choices would directly or in-
directly violate them has a large influence on the per-
formance of the system. Currently, we preprocess both
the constraints and the representation in order to build up
the following meta-information that can be queried by the
system in order to detect whether a violation has occurred:

• The Must Type Set of a node type contains itself and
all of its supertypes.

• The Transitive Must Type Set of a node type is de-
fined as the set of node types that must appear in a
subtree rooted at a node of the given type.

• The May Type Set of a node type contains itself, all
of its supertypes and all of its non-abstract subtypes.

• The Transitive May Type Set of a node type is defined
as the set of possible node types and supertypes that
can appear in a subtree rooted at a node of the given
type.

• The Shortest Terminal Length of a node type is the
minimum number of arcs that must be traversed from
nodes of that type before a terminal node is reached.

A fixed set of rules are then used to determine
whether a violation has occurred. These rules con-
tain a pattern part that is matched against parts of
the constraints and a condition part that, based on the
current tree and the results of queries over the meta-
data, returns whether or not the constraint can be sat-
isfied. For example, one rule looks for constraints of
the form exists NodeType in Subtree, where
NodeType and Subtree are variables, and will then
check whether NodeType is within the May Type Set of
any placeholder nodes within Subtree. If it is not, then
this rule has successfully determined that the constraint

Computational Creativity 2007

140

can never be satisfied by any complete trees built upon the
current partial tree.

4.4 Evaluation

So far, we have tested our constraint handling approach
on a number of small examples from very simple con-
straints, such as asserting that a certain node type must ap-
pear in all solutions, to complex ones based on node type
co-dependency. Although we do not have enough results
to produce a full quantitative analysis of the approach, we
have noticed good performance in the face of complex
constraints where the space of valid solutions is sparse.
Unfortunately, this is often hidden by poorer performance
when faced with simple constraints (due to the overhead
of the system) or combinations of constraints that are not
covered by our reasoning rules. This is partly because,
when faced with a problem for which no rules exist, our
system degenerates to an exhaustive search of the solution
space, which can result in repeatedly taking paths that lead
to dead ends.

However, one advantage that our system may have
over penalty-based approaches (which we intend to check
empirically) is that the destructive effect of mutation and
crossover is reduced by guaranteeing that offspring will
always be valid solutions. Such destructive effects (when
children have lower fitness than their parents) can lead to
introns and bloat in members of the population, which can
hamper the evolutionary process (Soule and Foster, 1997).

5 Application to Algorithmic Art
To test our system, we prototyped three different problem
specifications for generating different types of algorithmic
art. The three types that we focused on were:

• Colour-based artwork, where the algorithm used to
set the colour of each pixel in the picture is evolved,
in a similar vein to NEvAr (Machado and Cardoso,
2002).

• Particle-based artwork, where the algorithm used
to set the position and colour of 1000 particles is
evolved and the particle trails are plotted over 100
time steps.

• Image-based artwork, where the algorithm used to
set the colour of each pixel in an image can also use
colour values from a source image.

A different problem specification was written for each
of the above types, but each one outputs code in a lan-
guage based on Processing7, a scripting language used
by graphic artists that is tailored to providing high-level
drawing operations. These scripts were then executed to
produce the resulting images.

5.1 Colour-Based Artwork

In this representation, the resulting programs loop over
all pixels in the output image and set their hue, satura-
tion and value based on some algorithm. The part of the

7See http://www.processing.org

program that loops over all the pixels is constant between
solutions, however the algorithms used to set the hue, sat-
uration and value of each pixel can vary. To allow for
this, the representation has node types for constructing
floating-point expressions which include constants (within
the range 0.0 to 1.0 inclusive), simple mathematical func-
tions (add, subtract, multiply, divide, sin, cosine and ran-
dom) and variables (the x and y position, expressed as
screen proportions).

Since the representation is quite restricted, the type
system in the representation is enough to ensure that all
produced solutions compile. However, there are still a
number of compiling solutions that we want to rule out,
such as those that cause errors at runtime or produce pic-
tures that we know will be judged badly. To remove these
from the search space, we added the following constraints
to the constraints file:

• There must be a variable somewhere in the solution
tree, where a variable is a reference to the x or y po-
sition in the image or a call to random. All solutions
that do not contain variables will always produce im-
ages in which all pixels have the same colour.

• No constant representing the number one must ever
appear as an operand of a multiply expression. Any
solution that contains this combination could be sim-
plified and so is redundant.

• All functions must contain at least one variable as
one of their operators. This avoids constant sub-
expressions that may create values outside of the de-
sired range or may be more simply expressed as a
single constant.

The compiler file then specifies the mapping between
the node types and the corresponding scripting code that
draws the image. All of the numerical expression node
types map to their expected operators, function calls or
variable names, while the root type maps to the code that
loops over the image and uses the generated expressions
to set the hue, saturation and colour components of each
pixel as shown below:

compile Main {
|int width = 500;
|int height = 500;
|public void setup() {
| size(width, height);
| background(
| hsv(0.0f, 0.0f, 0.0f)
|);
| for (float y=0; y<1;
| y+=1/(float)height) {
| for (float x=0; x<1;
| x+=1/(float)width) {
| float h = ${hue};
| float s = ${saturation};
| float v = ${value};
| pixel(x, y, hsv(h, s, v));
| }
| }
|}

};

Computational Creativity 2007

141

Overall, the colour-based artwork problem specifica-
tion consists of 130 lines of text spread across these three
files which describes 29 node types, 5 constraints and 24
compiler rules. With this, we could generate, crossover
and mutate solutions using the algorithms described in
Section 4.1 and 4.2 and then compile and execute the re-
sulting scripts and inspect the images generated. In figure
1, we present some example images generated using this
representation.

5.2 Particle-Based Artwork

The second representation to be tested used a simple parti-
cle simulation as a basis for producing artwork. The gen-
erated part of the solution is the algorithm used to control
the position and colour of 1000 particles over time. The
static part of the solution creates the 1000 particles and
then plots their trails over 100 time steps. In addition to
this, a convolution is applied to the resulting image after
each time step, the kernel of which can also vary. This has
the result that lines drawn in early time steps will often ap-
pear more blurred than those drawn in later time steps, so
that an impression of how the simulation has progressed
over time can be seen in the resulting image.

The representation used here was very close to the
colour-based representation, except with the variables
now tracking the position, colour, previous position, time
and index of each particle. Where the colour-based rep-
resentation only evolved three numerical expressions, this
representation evolves 12; six to initialise the position and
colour of every particle and six more to update the position
and colour of every particle in every time step, in addition
to three constants that control the background colour of
the image.

The constraints upon the representation are also more
complex than those for the colour-based artwork, mainly
due to the additional variables that are only in scope for
particular parts of the program. For example, it makes
no sense to reference the time step number or a particle’s
previous position in its initialisation expressions, so these
are explicitly disallowed in the constraints.

Overall, the particle-based artwork problem specifica-
tion consists of 238 lines of text which describes 44 node
types, 6 constraints and 38 compiler rules. In figure 2, we
present some example images generated using this repre-
sentation.

5.3 Image-Based Artwork

The third representation to be tested used an existing im-
age as input and could query this image for its hue, satu-
ration and value components at any point, then use these
values in numerical expressions for setting the colour of
each pixel in the output image. This allowed it to pro-
duce image-filter style images by setting the output pixel
colours to some function of the source pixel colours. It
could also produce warps of the source image by assign-
ing the output pixels to pixels at different positions in the
source image based on some numeric function. Finally, it
could also evolve the kernel of a convolution filter to be
applied as a post-processing step. The result of this is that
a range of images are produced, some of which obviously

contain the source image filtered in some way, and others
which merely use it as a source of semi-random values.

The constraints for this representation were very simi-
lar to those of the colour-based representation, except that
additional constraints were added to force all solutions
to use the source image colours somewhere in its com-
putation of the output image colours. This ensured that
the search space of this representation did not include the
search space of the colour-based representation as a sub-
set.

Overall, the image-based artwork problem specifica-
tion consists of 171 lines of text which describes 34 node
types, 6 constraints and 28 compiler rules. In figure 3, we
present some example images generated using this rep-
resentation along with the source image used to produce
them.

6 Future Work
In section 5, we used the domain of algorithmic art to test
the usage of our framework for creative artefact genera-
tion, where we were able to use simple problem specifi-
cations to produce artworks of a similar nature to those
produced with bespoke systems. However, many of the
design decisions made during the development of our sys-
tem have been motivated by our interest in scaling it up to
handle much more complex problems efficiently. We are
currently using the system in domains such as interactive
art and the generation of simple computer games and have
plans for 3D model and landscape generation.

Early results from these domains show that the evalu-
ation of solutions is much more time-consuming than that
of the algorithmic art shown here. For interactive domains
in particular, the user must often try various input combi-
nations in order to test for a response. We therefore be-
lieve that it is important for the system to extract more in-
formation from each evaluation. One way to achieve this
is to allow the user to drill down into each solution in or-
der to target the specific parts that are performing poorly.
The system could then refine these parts separately until
they meet the user’s satisfaction, when they could be re-
combined with the rest of the solution.

We also intend to investigate general ways of allow-
ing our system to refine solutions semi-autonomously in
order to reduce the number of evaluations performed by
the user. This could be done by allowing users to specify
their preferences to the system as a fitness function over
the phenotype, or a machine learning approach could be
used to learn their preferences from the initial evaluations
made during each session. By using a logic-based learn-
ing method such as Inductive Logic Programming (Mug-
gleton, 1991), this opens up the possibility of the user un-
derstanding and altering the learned fitness function.

Finally, we acknowledge the that evaluation of sys-
tems and the artefacts they produce is an essential as-
pect of computational creativity which is missing from the
work presented here and we aim to fill this gap. We are
already planning a number of studies for assessing both
the usability of our system and the appeal of the artefacts
that it produces. We are also looking into ways to quanti-
tatively evaluate parts of our system where possible.

Computational Creativity 2007

142

7 Conclusions
We have presented the first description of our generic
framework for automated program generation, and
demonstrated its usage in an evolutionary art setting. We
have found that bringing constraint checking into the so-
lution generation process can help weed out systemati-
cally poor solutions and produce solutions faster than tra-
ditional generate-and-test approaches. As we saw with the
application to three separate art generation problems, our
framework enables rapid development of program genera-
tion systems. This has helped us to quickly prototype, test
and refine various representations for different program
generation problems.

Our current implementation is lacking in a number of
areas that prevent us from applying it to solve more com-
plex problems. Although the use of constraints helps to
rule out many bad solutions, we will need to supplement
this with more sophisticated constraints and a flexible fit-
ness calculation mechanism. This is because, for more
complex representations, we’ve found our existing con-
straint language is insufficient for ruling out enough bad
solutions to enable convergence on good solutions within
a reasonable time. However, this work is ongoing, and we
expect to find a number of ways to address these issues
in order to allow us to test the system on a wide range of
different domains.

Acknowledgements
We would like to thank the anonymous reviewers for their
comments which have helped us to improve this paper.

References
Baeck, T., Fogel, D., and Michalewicz, Z. (1995). Penalty

functions. Handbook of Evolutionary Computation.
Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D.

(1998). Genetic Programming: An Introduction.
Gottlieb, J. and Raidl, G. R. (2000). The effects of locality

on the dynamics of decoder-based evolutionary search.
In Proc. of the Genetic and Evolutionary Computation
Conference 2000, pages 283–290.

Johanson, B. and Poli, R. (1998). GP-music: An interac-
tive genetic programming system for music generation
with automated fitness raters. In Genetic Programming
1998: Proc. of the 3rd Annual Conference, pages 181–
186.

Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.

Machado, P. and Cardoso, A. (2002). All the truth about
NEvAr. Applied Intelligence, 16:101–118.

Michalewicz, Z. and Nazhiyath, G. (1995). Genocop iii:
A co-evolutionary algorithm for numerical optimiza-
tion problems with nonlinear constraints. In Proc. of
the 2nd IEEE International Conference on Evolution-
ary Computation, pages 647–651.

Montana, D. J. (1995). Strongly typed genetic program-
ming. Journal of Evolutionary Computation, 3:199–
230.

Muggleton, S. (1991). Inductive Logic Programming.
New Generation Computing, 8(4):295–318.

Soule, T. and Foster, J. A. (1997). Code size and depth
flows in genetic programming. In Proc. of the 2nd An-
nual Conference on Genetic Programming, pages 313–
320.

Weise, T. and Geihs, K. (2006). DGPF - an adaptable
framework for distributed multi-objective search algo-
rithms applied to the genetic programming of sensor
networks. In Proc. of the 2nd International Conference
on Bioinspired Optimization Methods and their Appli-
cation, BIOMA 2006, pages 157–166.

Figure 1: Evolved images - colour-based approach

Computational Creativity 2007

143

Figure 2: Evolved images - particle-based approach Figure 3: Original and evolved images - image-based ap-
proach

Computational Creativity 2007

144

Posters

Computational Creativity 2007

145

Computational Creativity 2007

146

FormGrow Revisited — from DNA to 3D Organic Visualisation

William Latham
Goldsmiths, University of London
w.latham@gold.ac.uk

Miki Shaw
Goldsmiths, University of London

miki@gold.ac.uk

Stephen Todd
Frederic Fol Leymarie

Goldsmiths, University of London
New Cross, London SE14 6NW, U.K.

s.todd@gold.ac.uk
ffl@gold.ac.uk1 Introduction

FormGrow is a “virtual machine” producing 3D com-
puter art forms or designs. It embodies the particular
“organic” aesthetics favored by Latham together with a
“shape grammar” made of primitives,e.g., horn-like struc-
tures, transforms or assembly rules, and a number of
parameters encoding,e.g., color, scale or texture. We
have re-visited theFormGrow system of Latham and Todd
(1992) and brought it back to life in a modern implemen-
tation taking advantage of standard graphics libraries and
portable coding. The main emphasis here however, is on
how we are bringing this system closer to the realm of
biology.

Real DNA data, in the form of nucleotide sequences
is transformed via a series of tables we have empirically
designed to become readable byFormGrow. These tables
process nucleotides as “codon” triplets of data as would
ribosomes in a live cell. Notions of “start,” “stop,” and
“junk” DNA code are also embedded in our system.

Our motivation for re-visiting Latham and Todd’s
work is that it is a powerful system which offers the possi-
bility of generating organic-like shapes and which from its
origins was meant as a metaphor to nature’s way of evolv-
ing forms. In re-visiting this work, on the one hand we
bring up-to-date the technology developed in (Todd and
Latham, 1992) in the context of recent advances in graph-
ics and computational geometry, and on the other hand
we bring it much closer to biology via the recent advances
made in understanding the working of nature in the fields
of genomics and proteomics.

2 Use of DNA inFormGrow

DNA is alike a shape-specification language. The DNA
residing in the cells of every living organism lays out its
genetic blueprint. So the complete DNA, a very long
string made from (4) nucleotides, of a given organism can
be said to fundamentally specify its unique shape. On a
lower level, DNA encodes proteins which constitute the
body’s key builders and building blocks. A protein is it-
self made of a string of (20) simpler molecules: the amino
acids. The DNA translation mechanism looks at the nu-
cleotides in groups of three: triplets called “codons;” each
codon translates to a single amino acid.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2007 Goldsmiths, University of London

Following this model, we created an analogous trans-
lation system to convert DNA sequences intoFormGrow
code. At a coarse level,FormGrow code can be viewed
as a series of function calls, with each function requiring
a small number of arguments. So we created 2 transla-
tion tables: the “transform table,” which translates from
codons to transformational functions; and the “number
table,” which translates from codons to numerical argu-
ments. Given our input sequence, we translate the first
codon into a function using the transform table, and then
generate numerical arguments for that function by trans-
lating the following codons into numbers, using the num-
ber table. Once we have sufficient arguments, we return
to the transform table to generate our next function, and
so the cycle continues. Finally we render the generated
FormGrow code to produce a 3D shape.

It is interesting to note some similarities between na-
ture’s translation method and ours. In the original transla-
tion table there is a “start” codon which signals that a new
protein is being specified. Likewise, in our transform ta-
ble, the “add horn” transform flags the beginning of a new
shape. The “stop” codon is also mirrored in our system. A
side effect of adopting the “start” and “stop” mechanism
is that we end up with large sections of “junk code,”i.e.,
code which generates no proteins or shapes because it lies
in a non-coding section of the sequence (between a “stop”
and a “start”). By changing the layout of the transform ta-
ble we could affect the proportion of junk code produced.
We experimented with producing a few different iterations
of the transform table in order to get a balance of functions
that would produce an interesting variety of shapes.

At the core of this work is a simple idea of feed-
ing DNA data sequences into a rich 3D form generator
calledFormGrow, to generate organic-looking 3D growth
structure, creating an equivalence of the DNA mapped
into an alternative multi-dimensional space. How use-
ful this mapped equivalence is will become clearer as we
work closer with biologists and engage in further cross-
fertilization of ideas.

Reference

Todd, S. and Latham, W. (1992).Evolutionary Art and
Computers. Academic Press.

Computational Creativity 2007

147

TOWARDS CREATIVE VISUAL EXPRESSION IN VIRTUAL HUMANS

Celso de Melo Ana Paiva
IST-Technical University of Lisbon and INESC-ID

Avenida Prof. Cavaco Silva, Taguspark
2780-990 Porto Salvo, Portugal

cdemelo@gaips.inesc-id.pt | ana.paiva@inesc-id.pt

Virtual humans are embodied characters which in-
habit virtual worlds. They introduce a new paradigm
of human-machine interaction using natural multimodal
communication and, thus, need to be expressive. Further-
more, expression should be effective and aesthetic. Effec-
tive means the receiver should understand the message.
Aesthetic means that besides function, expression should
strive for beauty. In humans, we see the former in every-
day communication and, the latter, particularly in the arts.

Key to effective and aesthetic expression is a model
for creativity, a model for emotions and a sophisticated
medium. Given a communicative intent, the creativity
model is responsible for expressing it in the medium. The
emotion model affects the generation and selection of al-
ternatives and is also central to the expression of emo-
tions. Finally, the medium structures creative expression
and, thus, should be versatile.

This work aims at creating a model for effective and
aesthetic visual expression in virtual humans, Fig.1. Es-
sentially, the communicative intent is generated in acom-
municative intent planner. Thecreativity model, then, ex-
presses it, effectively and aesthetically, in thebodily, en-
vironment and screen expression modules. The emotion
model may define communicative intent in the case of ex-
pression of emotions and may influence the creative pro-
cess itself. The creativity model may also define com-
municative intent, a task usually referred to as problem
identification, and may elicit further emotions.

Having clarified the goal, this work’s contribution can
now be explained. This work proposes a model for bod-
ily, environment and screen expression as well as emotion
synthesis based on the OCC emotion theory, Fig.2. These
are two of the components required for effective and aes-
thetic expression. Furthermore, the model is fully inte-
grated and supports sophisticated multimodal expression.

Bodily expression explores the virtual human
body and face and supports: (a) keyframe anima-
tion; (b) robotics-based procedural animation; (c)
psycholinguistics-based gesticulation animation; (d)
pseudo-muscular facial animation. Environment expres-
sion explores the virtual human surrounding environment
and supports: (a) a pixel-based lighting model which
supports three types of light, multiple light sources and
shadows; (b) a camera model which supports three types

Figure 1: Overview of our approach.

Figure 2: Overview of the model.

of cameras and a library of shots. Screen expression
interprets the virtual human medium as a pixel canvas
and explores: (a) filters that manipulate the scene pixels
before rendering them to the backbuffer; (b) composition,
where aspects of the scene are separated into layers which
are filtered before combining to form the final image.
Finally, emotion synthesis relies on an implementation
of the OCC emotion theory with extensions to handle
emotion decay, reinforcement, mood and arousal.

The proposed model is presented as a step towards
effective and aesthetic virtual human visual expression.
What is missing is the creativity model which converts
communicative intent into bodily, environment and screen
expression. To accomplish this several issues must be ad-
dressed: How does this translation occur? What aesthetic
values guide this translation? How can we formalize and
evaluate the aesthetics of expression? How does emotion
influence the generation and selection of alternatives?

Computational Creativity 2007

148

