UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2020

IS51026A/IS51026B
Numerical Maths
Duration: 2 hours 15 minutes
Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.
The use of calculators is allowed. Students are required to note the model of the calculator on the answer sheet.

Electronic calculators must not be programmed prior to the examination. Calculators which display graphics, text or algebraic equations are not allowed.

Graph paper will be provided.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Part A

Multiple choice

Question 1 Each question has one correct answer
(a) What is the decimal representation of 221_{8} ?
i. 49_{10}
ii. 1160_{10}
iii. 345_{10}
iv. 145_{10}
(b) What is the binary representation of 221_{16} ?
i. 11011101_{2}
ii. 1000010001_{2}
iii. 10010001_{2}
iv. 1000100001_{2}
(c) The sequence $1,2,4,8, \ldots$ is
i. arithmetic
ii. neither arithmetic and geometric
iii. geometric
iv. both arithmetic and geometric
(d) A sequence is determined by a recurrence relation $u_{n+1}=u_{n}+2$, the third term u_{3} is $=6$ find u_{1}
i. -2
ii. 0
iii. 2
iv. 4
(e) Given $13 \times 10^{6} \equiv 15(\bmod 17)$ the remainder on division by 17 of $\left(13 \times 10^{6}\right)^{2}$ is:
i. 4
ii. 225
iii. 16×10^{12}
iv. 169×10^{12}
(f) The graph of $f(x)=(x-1)(x-2)\left(x^{2}+1\right)$:
i. passes through the point $(0,-2)$
ii. passes through the point $(1,0)$
iii. has a x-intercept of 1
iv. has a y-intercept of -2
(g) $\frac{2 \pi}{3}$ radians is:
i. 0.0366 degrees
ii. 2.09 degrees
iii. 60 degrees
iv. 120 degrees
(h) A triangle $A B C$ has sides $a=17.2 \mathrm{~cm}, b=16.5 \mathrm{~cm}$ and angle $A=1.3$ radians. The size of angle B is:
i. 1.18 radians
ii. 1.00 radians
iii. 0.27 radians
iv. This triangle does not exist
(i) The period of $f(x)=2 \sin (\pi+2 x)$ is
i. 2π
ii. π
iii. $\frac{1}{2 \pi}$
iv. $\frac{1}{\pi}$
(j) The frequency of $f(x)=2 \sin (\pi+2 x)$ is
i. $\frac{1}{2 \pi}$
ii. 2π
iii. $\frac{1}{\pi}$
iv. π
(k) $\log _{10} 1$ is equal to
i. 0
ii. 0.1
iii. $\log _{100} 10$
iv. is not defined
(l) $3 \log _{10} 10000$ is equal to:
i. $3 \log _{2} 16$
ii. 300
iii. 3000
iv. is not defined
(m) Calculate the following limit: $\lim _{x \rightarrow \infty} \frac{x^{2}-x}{x^{2}+x}$.
i. -1
ii. 1
iii. ∞
iv. is not defined
(n) Given $y=\cos (3 x+\pi)$
i. $\frac{d y}{d x}=\cos (3 x+\pi)$
ii. $\frac{d y}{d x}=3 \cos (3 x+\pi)$
iii. $\frac{d y}{d x}=-\sin (3 x+\pi)$
iv. $\frac{d y}{d x}=-3 \sin (3 x+\pi)$
(o) The modulus of the cartesian vector $(-3,3)$ is
i. $-\sqrt{2} \sqrt{3}$
ii. $\sqrt{-3} \sqrt{3}$
iii. $2 \sqrt{3}$
iv. $3 \sqrt{2}$
(p) You are given vectors $\underline{u}=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$ and $\underline{v}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ $\underline{u} \cdot \underline{v}$ the dot product (scalar product) of \underline{u} and \underline{v} is equal to
i. 2
ii. 5
iii. $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
iv. $\left(\begin{array}{c}2 \\ 3 \\ -3\end{array}\right)$
(q) Find M^{-1}, the inverse of M where $M=\left(\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$
i. $\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 1\end{array}\right)$
ii. $\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$
iii. $\left(\begin{array}{lll}1 & 0 & \frac{1}{3} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1\end{array}\right)$
iv. $\left(\begin{array}{ccc}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1\end{array}\right)$
(r) The following matrix represents which of the following transformations? $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)$
i. A scaling
ii. A translation
iii. A rotation
iv. A reflection
(s) Let S be the set $\{0,1,2,3,4,5,6,7,8,9\}$ how many 4 digit codes can be made from set S if repetitions are allowed?
i. 100
ii. 40
iii. 10^{4}
iv. 10^{10}
(t) Let S be the set $\{0,1,2,3,4,5,6,7,8,9\}$. how many 4 digit codes can be made from set S if repetitions are not allowed, and all codes are <3000
i. 2160
ii. 3024
iii. 1512
iv. 63

Part B

Question 2 Bases, Modular Arithmetic \& Probability
(a) i. Express the decimal number $(121.625)_{10}$ as a binary number
ii. Express the octal number $(147.34)_{8}$ as a decimal number
iii. Express the hexadecimal number (FE.16) ${ }_{16}$ as
(1) a binary number
(2) an octal number
iv. Working in base 2 and showing all your working, compute the following:

$$
(1001010)_{2}+(1001011)_{2}-(10001111)_{2}
$$

(b) i. Find the smallest positive integer modulo 29 that is congruent to
(1) 184
(2) 1540
(3) -1540
[3]
ii. Find the remainder on division by 29 of
(1) $184+1540$
(2) 184×1540
(3) 1540^{20}
iii. Find the following
(1) the additive inverse of 184 modulo 29
(2) the multiplicative inverse of 184 modulo 29
(c) i. How many different numbers can be made:
(1) using the digits $1,2,3$, 4 once each
(2) the digits $1,2,3,4,5,6$ once each
ii. How many different numbers can be made :
(1) using the digits $1,1,2,2$ once each
(2) using the digits $1,1,1,2,2,2$ once each
iii. How many different arrangements can be made from:
(1) 4 different coloured beads in a circle, where direction does not matter
(2) 4 beads, 2 black, 2 white in a circle, where direction does not matter

Question 3 Functions, Vectors \& Matrices

(a) i. Find numerical values for the following
(1) $\log _{3} 81$
(2) $\log _{3}\left(\frac{1}{81}\right)$
(3) $\log _{\frac{1}{3}}\left(\frac{1}{81}\right)$
(4) $4 \log _{\frac{1}{3}}\left(\frac{1}{3}\right)$
ii. Sketch the graphs of
(1) $f(x)=2^{x+1}$
(2) $g(x)=\log _{2}(x-1)$
iii. Find the inverse functions
(1) $f^{-1}(x)$
(2) $g^{-1}(x)$
(b) Given $\underline{v}_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right)$ and $\underline{v}_{2}=\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right)$
i. Rewrite \underline{v}_{1} in terms of standard unit vectors
ii. Find the magnitudes of \underline{v}_{1} and \underline{v}_{2}
iii. Find the dot product (scalar product) $\underline{v}_{1} \cdot \underline{v}_{2}$
iv. State the angle between \underline{v}_{1} and \underline{v}_{2}
v. Find a vector \underline{v}_{4} that is parallel to \underline{v}_{1}
vi. Find a vector \underline{v}_{5} that is perpendicular to \underline{v}_{1}
(c) Let A be a 3 x 3 homogeneous transformation matrix corresponding to an anticlockwise rotation of $\frac{\pi}{2}$ about the z-axis.
Let B be a $3 x 3$ homogeneous transformation matrix corresponding to a translation of the x and y -coordinates by -1 and 1 respectively.
i. Find the matrices A and B
ii. How would the transformation represented by the matrix B transform the following three points which represent a triangle in the Cartesian space: $(1,0)$, $(2,0)$ and $(1,1)$?
iii. Find the inverse matrices A^{-1} and B^{-1}
iv. Find the single matrix $C=A^{2}$
v. Describe the transformation represented by the matrix C

Question 4 Graph sketching, Differentiation, \&Trigonometric functions
(a) i. Find the following limits
(1) $\lim _{x \rightarrow 1} \frac{1}{x+1}$
(2) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(3) $\lim _{x \rightarrow 1^{+}} \frac{1}{1-x}$
(4) $\lim _{x \rightarrow \infty} \frac{3 x^{5}+2 x^{2}+2}{x^{5}+1}$
(5) $\lim _{x \rightarrow 0} \frac{x^{5}+1}{3 x^{5}+2 x^{2}+2}$
ii. Differentiate the following functions:
(1) $y=3 \cos x+2 \sin x$
(2) $y=\frac{\cos x}{\sin x}$
(3) $y=e^{\frac{\cos x}{\sin x}}$, you may use the result for (2) above.
(b) Given the following function $f(x)=(x-1)^{2}(x+1)^{2}$
i. Find the values of x for which $f(x)=0$
ii. Differentiate $f(x)$, (note $\left((x-1)^{2}(x+1)^{2}=x^{4}-2 x^{2}+1\right)$
iii. Hence find the stationary points of $f(x)$
iv. Determine the nature of each of the stationary points of $f(x)$
v. Sketch $f(x)$
(c) i. Triangle $A B C$ has side $a=43.0 \mathrm{~cm}$, side $b=27.0 \mathrm{~cm}$ and angle $C=1.80$ radians. Find the following: (give your answers to 3 significant figures)
(1) the length of side c
(2) the size of angles A and B
ii. Given $f(x)=3 \sin x$ and $g(x)=\cos \frac{x}{2}$
(1) Find the amplitude, the frequency and the period for

- $f(x)$
- $g(x)$
(2) By plotting the graphs of $f(x)$ and $g(x)$, or otherwise, find all the values of x between $-\pi \leq x \leq \pi$ for which $3 \sin x=\cos \frac{x}{2}\left(\right.$ note $\left.\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}\right)$

