UNIVERSITY OF LONDON GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2018-19

IS53051A Machine Learning

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks. Each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets. There are 100 marks available on this paper.

Calculators are not allowed for this exam – you will not need one.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS53051A 2018-2019

Page 1 of 11

Part A

Answer all questions. Multiple-choice questions may have more than one correct answer, and in that case all must be given for credit.

IS53051A 2018-2019

Page 2 of 11

Question 1: General Questions.

(a) The p histor	 (a) The process of finding parameters θ for function, f(X; θ) → Y (using historical data X, and corresponding labels Y) is an example of: 					
i.	Unsupervised learning					
ii.	Training					
iii.	Supervised learning					
iv.	Testing					
(b) For a	classifier, $f(X^* X; \theta) \to Y^*$, which values for Y^* might be valid?	[4]				
i.	Share price of a company on the stock market					
ii.	Banana, Apple, Car					
iii.	1, 2, 3					
iv.	Any range of real numbers					
(c) k-Ne	arest Neighbour is an example of:	[4]				
i.	Supervised classification					
ii.	Unsupervised learning					
iii.	Logistic regression					
iv.	None of the above					
(d) Addi	ng regularization to an optimisation function can be used to:	[4]				
i.	Increase complexity					
ii.	Penalise complexity					
iii.	Control overfitting					
iv.	None of the above					
(e) The following is(are) example(s) of unsupervised machine learning:						
i.	Clustering					
ii.	Dimensionality reduction					
iii.	Logistic regression					
iv.	None of the above					

IS53051A 2018-2019

Question 2: Cross validation.

(a) *N*-fold cross validation is applied to a dataset by splitting the data according to the following scheme:

experiment 1:	tra	test		
experiment 2:	train test		train	
experiment 3:	test	tra	ain	

- i. How many folds (N) are there here? [1]
 ii. If e_i is the error from experiment *i*, what is the equation for estimating the total error over all folds? [4]
- iii. If nested cross validation is going to be used, what is the name of the [1] additional data-set split that will be needed?
- (b) What problem does cross-validation reduce when performing model or [2] parameter selection?

IS53051A 2018-2019

Question 3: Evaluation.

(a) The confusion matrix below records the number of true / false negatives (TN/FN), and true/false positives (TP/FP) returned by a binary classifier.

		Pred	Prediction			
		0	1			
Ground	0	TN	FP			
Truth	1	FN	TP			

i.	Write the equation for overall accuracy.	[2]
ii.	Write the equation for recall.	[2]
iii.	Write the equation for precision.	[2]

(b) A company claims its new fitness device, RunTrack, can automatically recognise whether you are Standing (S), Walking (W), or Running (R). The following sequence is used to test the system:

Ground Truth = [S,W,R,W,S]

This results in the following output:

Prediction = [S,S,W,W,S]

i.	How many classes does RunTrack claim to recognise?	[1]
ii.	Draw the confusion matrix for this result.	[3]
iii.	Calculate the overall accuracy of RunTrack on this test set.	[2]

Part B

Answer two questions only.

IS53051A 2018-2019

Page 6 of 11

Question 4: Linear regression, optimization, regularization.

- (a) Given two known data points, $(x_1, y_1) = (2, 4)$ and $(x_2, y_2) = (3, 8)$
 - i. Draw a graph showing this data in 2D space. [3]
 - ii. Assuming a linear model, $y = \theta_0 + \theta_1 x$, use the data to solve for [5] parameters θ . Highlight which value is the gradient, and which is the y-intercept.
 - iii. What value for y would this model predict if x = 4 was observed? [2]
 - iv. A new data point is observed at $(x_3, y_3) = (1,1)$. Does this new data fit [5] our model? Would you expect such data in a real world system? Briefly justify your answer.
- (b) You are given an estimated regression hypothesis $h(x; \theta) = 2x^2$.
 - i. Given $\theta = [\theta_0, \theta_1, \theta_2]^T$, and $\mathbf{x} = [1, x, x^2]^T$, what are the values of θ_0 , [2] θ_1 , and θ_2 for the above hypothesis?
 - ii. What type of equation is *h*? What is its degree?
 - iii. Given (x,y) data observed at (1,1), (2,4), and (3,8), calculate the loss [5] for the hypothesis function using the mean squared loss function (where m is size of the dataset):

$$J(\theta) = \frac{1}{2M} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^{2}$$

Note: You can give your final answer as a fraction

- iv. The cost function $J(\theta)$ is used as part of the Gradient Descent [3] algorithm to optimise the parameters, $\theta = [\theta_0, \theta_1, \theta_2]^T$. If we wanted to apply regularization to that optimisation, what changes would be needed to the cost function? Write an equation for a regularized version of $J(\theta)$.
- v. During optimisation, what effect does increasing the regularization [3] parameter have on model complexity? How might this help the final model?

IS53051A 2018-2019

Page 7 of 11

[2]

Question 5: Logistic regression, linear regression, scaling

(a) A hypothesis function is defined as: $h(\mathbf{x}; \theta) = g(\theta^T \mathbf{x})$ with $g(z) = \frac{1}{1+e^{-z}}$, input features x , and parameters θ .								
	i.	What is the function $g(z)$ commonly known as?	[2]					
	ii.	What is the range of its output?	[2]					
	iii.	What is the value of the hypothesis function when $\theta^T x = 0$?	[3]					
	iv.	We want a classifier that outputs $y = 1$ when $(\theta^T x) \ge 0$, and $y = 0$ otherwise. (1) How is this decision made using the hypothesis function? (2) What does the value of the hypothesis function represent?	[5]					

- (b) You are asked to design a *logistic regression* classifier that detects whether there is a storm coming or not. You have data on the following:
 - y: {storm=1, not storm=0}
 - x_1 : temperature
 - x_2 : precipitation
 - x_3 : air pressure

Write out, in full, a suitable logistic regression hypothesis for this [5] problem in terms of features x_i and coefficients θ_i . Highlight any special cases of values for x_i .

IS53051A 2018-2019

- (c) A used car dealership asks you to build a website that lets people evaluate how much an old car might be worth. You have access to a database of cars with the following information:
 - y: an expert's opinion on the car's worth (in £)
 - x_1 : number of km driven
 - x_2 : the number of doors
 - x_3 : its age (in months)
 - i. Write an equation for a suitable *linear regression* hypothesis [5] function, $h(X; \theta)$, that can be trained on this database $(X = \{x_1, x_2, x_3\})$ to estimate a car's worth, y.
 - ii. Briefly discuss why you might we want to scale the data before [3] applying gradient descent on this function?
 - iii. The known ranges and average values for each of the input features in the database are:

 $\begin{array}{l} x_1 = [0; \ 1,000,000] \,, \quad \overline{x_1} = 100,000 \\ x_2 = [0; \qquad 10] \,, \quad \overline{x_2} = 3 \\ x_3 = [0; \qquad 1,000] \,, \quad \overline{x_3} = 50 \end{array}$

- (1) Given this information, what would be an appropriate formula [5] for scaling the data to within the range [-1, 1]?
- (2) Use this formula to scale the following data (*fractions will suffice*): $x_1 = 100,000 \text{ km}, x_2 = 4 \text{ doors}, x_3 = 40 \text{ months}.$

Question 6: Bayesian modelling

(a) In the following, we assume a binary classifier with features X, and class labels, $Y = \{0,1\}$. i. P(Y=y) represents the probability that random variable Y takes on the [3] value y. What does P(Y=y | X=x) represent? ii. If P(Y=1) = 0.2, what is the value of P(Y=0)? Why? [2] What is the name given to describe the type of classifier that aims, like [2] iii. logistic regression, to learn P(Y | X) directly? A generative classifier models the joint probability of a class and its iv. [2] associated feature data. Write this probability in terms of X and Y. (b) Bayes' theorem is defined as:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

i.	Which te	Which terms are referred to as i) the prior, ii) the posterior?									[4]	
	TT (1	1 /	1.			D		1	1		1.0	F 43

ii. Use the product rule to show how Bayes' theorem can be derived from [4] P(X,Y)

(c) A model has been trained to help classify whether a person has a cold or not $Y = \{cold, not\}$. Given a new observation X = symptom x (coughing), the following conditional probabilities are obtained:

$$P(x|cold) = 0.3$$
$$P(x|not) = 0.1$$
$$P(cold) = P(not) = 0.5$$

We assume that

Use this information and Bayes' theorem to help answer the following:

- i. Calculate the probability of a person having a cold given the observed [5] symptom, x, i.e. P(cold|x)? (hint: P(X) = P(X|cold)P(cold) + P(X|not)P(not))
- ii. A comprehensive study reveals that actually 1 in 10 people typically have [4] a cold at any one time, what does this fact do to the result above? Recalculate P(cold|x).
- iii. Briefly describe how we might use Bayes' Theorem to build a classifier [4] that estimates the most probable illness, given symptom *x*, from the following:
 Y = {cold, flu, hayfever}?