UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2019

IS53024B Artificial Intelligence

Duration: 1 hour 30 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

Electronic calculators must not be programmed prior to the examination. Calculators which display graphics, text or algebraic equations are not allowed.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Part A

(a) Copy and complete the following table of definitions. The first definition has been provided as a guide.

[20]

Term	Definition
Scalar regression	A task where the target is a single continuous value
AI	
Loss function	
Backpropagation	
Hypothesis space	
Sample and target	
Multi-label classification	
Dense layer	
Supervised learning	
Hold-out validation	
Sigmoid neuron	

(a) Consider the following Keras deep learning model:

```
from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(64, activation = 'relu', input_shape = (10000,)))
model.add(layers.Dense(64, activation = 'relu'))
model.add(layers.Dense(46, activation = 'softmax'))

i. What is the intended type of classification task? Explain your answer.

[4]
ii. How many layers are there?

[1]
iii. How many output classes are there? Show your working.

[4]
```

(b) This question part concerns the figure 'Training and validation loss' .

Training and validation loss

i. Describe and explain the shape of the training loss plot.	[5]
ii. Describe and explain the shape of the validation loss plot.	[3]
iii. What do the plots imply for the model?	[2]

Part B

- (a) Explain the convolution operation. [6]
- (b) Suppose, in an image classification task, the training image set is quite small just 2000 images and no further images are available. What measures could be taken to mitigate overfitting?
- (c) Convolutional networks frequently employ max pooling layers. What is a max pooling layer and what is its purpose? [6]

[2]

TURN OVER

- (d) The employment of a pre-trained network is a common approach to deep learning on small image datasets. Describe how a pre-trained convolutional network could be used on a small dataset. Provide a motivation for each step that you describe. [6]
- (e) Consider the following convolutional base:

```
from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

Copy the summary table for this convolutional base and fill in the missing values (marked ??). [10]

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, ??, ??, 32)	320
max_pooling2d_1 (MaxPooling2	(None, ??, ??, 32)	0
conv2d_2 (Conv2D)	(None, ??, ??, 64)	18496
max_pooling2d_2 (MaxPooling2	(None, ??, ??, 64)	0
conv2d_3 (Conv2D)	(None, ??, ??, 64)	36928

(a) One hot encoding is frequently used in text processing. Suppose we have a Python dictionary:

```
{1: 'slasher',
2: 'worst',
3: 'truly,',
4: 'exaggerating,',
5: 'of',
6: 'ever',
7: 'this',
8: 'one',
9: 'is',
10: 'made',
11: 'movies',
12: 'without',
13: 'the'}
```

What is a one-hot encoding of the phrase: 'worst ever made'? Show your working.

[4]

- (b) What is text embedding? [4]
- (c) Why are feedforward networks generally not recommended for sequential data? [2]
- (d) Recurrent neural networks (RNNs), on the other hand, are a common choice for the prediction of sequence data. Explain how the simple recurrent unit, as implemented in a Keras layer by SimpleRNN, functions. Illustrate your answer with pseudocode.

 [6]
- (e) An RNN implemented with a Keras layer of SimpleRNN units does not perform well in practice. Why is that? [4]
- (f) Explain how the long short-term layer helps address the above problem. Illustrate your answer with pseudocode and ensure that each element of the pseudocode is explained. [10]

(a)	Write a short account on the application of deep learning to retro Atari console games.	[10]
(b)	Write an account of the four key technologies that have contributed to the deep learning revolution.	[10]
(c)	Discuss the limitations of deep learning.	[10]