UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2019

IS51026A/IS51026B Numerical Maths

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

Electronic calculators must not be programmed prior to the examination. Calculators which display graphics, text or algebraic equations are not allowed.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS51026A/IS51026B 2019 page 1 of 11

TURN OVER

Part A Multiple choice

IS51026A/IS51026B 2019 page 2 of 11

 (b) Which of the following is not a rational number? 2 √8 √8 √16 √16 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	Question 1	Each question has one correct answer	
 ii. 593₁₀ iii. 145₁₀ iv. 338₁₀ (b) Which of the following is not a rational number? 2 √8 √16 v. 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 0.66 cm v. This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	(a) What is	the decimal representation of 152_{16} ?	
 iii. 145₁₀ iv. 338₁₀ (b) Which of the following is not a rational number? 2 √8 √8 √16 1v. 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm 7.16 This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm 7.16 This triangle does not exist 	i. 337 ₁	0	
 iv. 338₁₀ (b) Which of the following is not a rational number? 2 √8 √8 √16 √16 1.2121212 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	ii. 593 ₁	0	
 (b) Which of the following is not a rational number? 2 √8 √8 √16 √16 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	iii. 145 ₁	0	
 (b) Which of the following is not a rational number? 2 √8 √8 √16 √16 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	iv. 338 ₁	0	
 i. 2 ii. √8 iii. √16 iv. 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? i. 7 ii. 8 iii. 9 iv. 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm tv. This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 			[2]
 ii. √8 iii. √16 iv. 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	(b) Which	of the following is not a rational number?	
 iii. √16 iv. 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 			
 iv. 21.212121 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 			
 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	iii. $\sqrt{16}$		
 (c) What is the multiplicative inverse of 8 in modulo 11? 7 8 9 9 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	iv. 21.2	12121	
 i. 7 ii. 8 iii. 9 iv. 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 			[2]
 ii. 8 iii. 9 iv. 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	(c) What is	the multiplicative inverse of 8 in modulo 11?	
 iii. 9 iv. 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	i. 7		
 iv. 10 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	ii. 8		
 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	iii. 9		
 (d) A right angled triangle ABC has angle A = 0.75 radians, side a = 9 cm and c is the hypotenuse. The size of side b is 0.82 radians 8.38 cm 9.66 cm This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	iv. 10		ഖ
 ii. 8.38 cm iii. 9.66 cm iv. This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	() =		[2]
 iii. 9.66 cm iv. This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	i. 0.82	radians	
 iv. This triangle does not exist (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: 12.4 cm 2.93 cm 8.51 cm This triangle does not exist 	ii. 8.38	cm	
 (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: i. 12.4 cm ii. 2.93 cm iii. 8.51 cm iv. This triangle does not exist 	iii. 9.66	cm	
 (e) A triangle XYZ has sides x = 7 cm, y = 8 cm and angle Z = 1.2 radians. The length of side z is: i. 12.4 cm ii. 2.93 cm iii. 8.51 cm iv. This triangle does not exist 	iv. This	triangle does not exist	
length of side z is: i. 12.4 cm ii. 2.93 cm iii. 8.51 cm iv. This triangle does not exist			[2]
ii. 2.93 cmiii. 8.51 cmiv. This triangle does not exist			
iii. 8.51 cm iv. This triangle does not exist	i. 12.4	cm	
iv. This triangle does not exist	ii. 2.93	cm	
-	iii. 8.51	cm	
	iv. This	triangle does not exist	
			[2]

IS51026A/IS51026B 2019 page 3 of 11 TURN OVER

- (f) Convert 23^{o} to radians
 - i. 0.201 radians
 - ii. 0.401 radians
 - iii. 0.585 radians
 - iv. $0.803~{\rm radians}$

[2]

(g) The period of $f(x) = 3\sin(2+x)$ is

- i. 2π
- ii. 2
- iii. 3π
- iv. 3

[2]

(h) The amplitude of $f(x) = 3\sin(2+x)$ is

- i. 2π
- ii. 2
- iii. 3π
- iv. 3

[2]

[2]

(i) $3 \log_2 8$ is equal to:

- i. 24
- ii. 9
- iii. $\log_2 24$
- iv. is not defined

(j) $\log_{10} -1$ is equal to

- i. 0
- ii. -1
- iii. -0.1

iv. is not defined

[2]

IS51026A/IS51026B 2019 page 4 of 11

- (k) The graph of 2^{x+1} :
 - i. has a x-intercept of 1
 - ii. has a y-intercept of 1
 - iii. passes through the point (0, 2)
 - iv. passes through the point (2,0)

[2]

[2]

- (l) Calculate the following limit: $\lim_{x\to 1} \frac{x^2-1}{x-1}$.
 - i. 2
 - ii. ∞
 - iii. $\frac{1}{2}$
 - iv. is not defined
- (m) Given $y = \cos(x^2)$
 - i. $\frac{dy}{dx} = -\sin 2x$ ii. $\frac{dy}{dx} = \sin 2x$ iii. $\frac{dy}{dx} = -\sin(x^2)$ iv. $\frac{dy}{dx} = -2x\sin(x^2)$
- (n) Given $y = \frac{1}{x}$
 - i. $\frac{dy}{dx} = \frac{1}{1}$ ii. $\frac{dy}{dx} = -\frac{1}{x^2}$ iii. $\frac{dy}{dx} = \ln x$ iv. $\frac{dy}{dx} = e^x$

[2]

[2]

[2]

(o) Convert the vector (2,2) in polar coordinates to cartesian coordinates

- i. $\begin{pmatrix} 2\\ 2 \end{pmatrix}$ ii. $\begin{pmatrix} 2\sqrt{2}\\ \frac{\pi}{2} \end{pmatrix}$ iii. $\begin{pmatrix} 2\sqrt{2}\\ \frac{\pi}{2} \end{pmatrix}$ iii. $\begin{pmatrix} 2\sqrt{2}\\ \frac{3\pi}{2} \end{pmatrix}$ iv. none of the above

IS51026A/IS51026B 2019 p

page 5 of 11

TURN OVER

(p) You are given vectors
$$\underline{u} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
 and $\underline{v} = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}$

 $\underline{u} \times \underline{v}$ the cross product (vector product) of \underline{u} and $\underline{v} \text{is equal to}$

i. 3
ii. 4
iii.
$$\begin{pmatrix} 1\\0\\2 \end{pmatrix}$$
iv.
$$\begin{pmatrix} 10\\-1\\5 \end{pmatrix}$$

[2]

(q) Find M^{-1} , the inverse of M where $M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

i. $\begin{pmatrix} \frac{1}{2} & 0 & -1 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ii. $\begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

iv. none of the above

[2]

(r) The following matrix represents which of the following transformations? $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- i. A scaling
- ii. A translation
- iii. A rotation
- iv. A reflection

IS51026A/IS51026B 2019 page 6 of 11

[2]

- (s) Given complex numbers $z_1 = 2 i$ and $z_2 = 1 + i$ find $z_1 \times z_2$.
 - i. 1 + 3iii. $2 + i - i^2$ iii. 1 - 3iiv. 3 + i

[2]

- (t) Given complex numbers $z_1 = 2$ and $z_2 = 1 + i$ find $\frac{z_1}{z_2}$.
 - i. 1 iii. -1 + iiii. $\frac{1+i}{2}$ iv. $\frac{1+i}{4}$

[2]

Part B

IS51026A/IS51026B 2019 page 8 of 11

Question 2	Bases, Modular Arithmetic & Trigonometry

(a) i. Express the decimal number $(81.375)_{10}$ as a binary number	[2]
ii. Express the hexadecimal number $(1F4.E)_{16}$ as a decimal number	[2]
iii. Express the octal number $(173.16)_8$ as	
(1) a binary number(2) a hexadecimal number	[4]
iv. Working in base 16 and showing all your working, compute the following:	
$(4AA2)_{16} + (394)_{16} - (1F92)_{16}$	
	[2]
(b) i. Find the smallest positive integer modulo 13 that is congruent to(1) 162	
(2)1662	[2]
ii. Find the remainder on division by 13 of	
(1) $162 + 1662$ (2) 162×1662	
(2) 162×1002 (3) 1662^{19}	[6]
iii. Find the following	
(1) the additive inverse of 11 modulo 13	
(2) the multiplicative inverse of 11 modulo 13	[2]
(c) i. Triangle ABC has side $a = 5cm$, side $b = 6.2cm$ and angle $B = 0.873$ radians Find	
(1) the size of angle A	
(2) the size of angle C	
(3) the length of side c	$\left[4 ight]$
ii. Given $f(x) = \sin(x + \frac{\pi}{4})$ and $g(x) = 2\cos 2x$	
(1) Find the amplitude, frequency and period for $f(x)$	
 f(x) g(x) 	
	[3]
(2) By plotting the graphs of $f(x)$, or otherwise, find all the values of x	ഖ
between $-\pi$ and π for which $\sin(x + \frac{\pi}{4}) = 0.5$	[3]

Question 3 Functions, Graph Sketching & Vectors

(a) i. Find numerical values for the following

- (1) $\log_2 8$ (2) $\log_2(\frac{1}{4})$ (3) $\log_4(\frac{1}{2})$ [3]
- ii. Sketch the graphs of

(1)
$$f(x) = 3^{-x}$$

(2) $g(x) = \log_3 x - 1$ [4]

iii. Find the inverse functions

(1)
$$f^{-1}(x)$$

(2) $g^{-1}(x)$ [3]

(b) i. Find the following limits

(1)
$$\lim_{x \to 2} \frac{x^2 + x}{x + 1}$$

(2) $\lim_{x \to 0} \frac{x^2 + x}{x + 1}$
(3) $\lim_{x \to \infty} \frac{x^2 + x}{x + 1}$
[3]

- ii. Given the following function $f(x) = (x 1)(x + 1)^2$
 - (1) Find the values of x for which f(x) = 0
 - (2) Differentiate f(x), (note $(x-1)(x+1)^2 = x^3 + x^2 x 1$)
 - (3) Hence find any stationary points of f(x) and determine their nature
 - (4) Sketch f(x)

(c) Given
$$\underline{v}_1 = \begin{pmatrix} 4\\0\\1 \end{pmatrix}$$
 and $\underline{v}_2 = \begin{pmatrix} -1\\0\\-2 \end{pmatrix}$

- i. rewrite \underline{v}_1 in terms of standard unit vectors
- ii. Find the magnitudes of \underline{v}_1 and \underline{v}_2
- iii. Find the dot product $\underline{v}_1 \cdot \underline{v}_2$
- iv. Hence find the angle between \underline{v}_1 and \underline{v}_2
- v. Find $\underline{v}_3,$ the cross product (vector product) $\underline{v}_1 \times \underline{v}_2$
- vi. State the angle between \underline{v}_3 and \underline{v}_1

[10]

[7]

IS51026A/IS51026B 2019 page 10 of 11

Question 4 Matrices & Complex Numbers

(a) Let A be a 3x3 homogeneous transformation matrix corresponding to a scaling of
the y-coordinates only by a factor of 3. Let B be a 3x3 homogeneous transformation
matrix corresponding to a translation of the x and y-coordinates by -1 and 1
respectively. Let C be a 3x3 homogeneous transformation matrix corresponding
to an anti-clockwise rotation of π about the z-axis

i. Find	the matrices A, B and C	[3]
follo	would the transformation represented by the matrix C transform the wing three points which represent a triangle in the Cartesian space: $(1,0)$, and $(2,1)$?	[3]
iii. Find	the inverse matrices A^{-1} , B^{-1} and C^{-1}	[3]
	the single matrix D which represents the transformation represented by ix B followed by transformation represented by matrix A	[3]
v. Find	the inverse matrix D^{-1}	[3]
(b) Given co	Somplex numbers $z_1 = 2 + i$ and $z_2 = 3 - i$	
i. Repr	resent z_1 and z_2 on an Argand diagram	[2]
ii. Find		
(1)	$z_1 + z_2$	
(2)	$z_1 - z_2$	
	$z_1 imes z_2$	
(4)		
(5)	$\frac{z_1}{z_2}$	[5]
iii. Conv	vert z_1	
. ,	to polar form	[9]
. ,	to exponential form	[3]
	z_1^3 , give your answer in exponential form	[2]
v. Find	all roots $z_1^{\frac{1}{3}}$	[3]

IS51026A/IS51026B 2019 page 11 of 11 END OF EXAMINATION