UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2018

IS53024A Artificial Intelligence

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

No calculators should be used.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS53024A 2018

page 1 of 8

TURN OVER

Part A

IS53024A 2018

page 2 of 8

(a)	Define rational agent.	[5]
(b)	Suppose that a room thermostat turns the heating on if the room is too cold, and otherwise turns the heating off. Argue that the thermostat is a rational agent.	[5]
(c)	Suggest an appropriate performance measure for the thermostat in part (b) above.	[5]
(d)	Write an agent function for the thermostat in part (b) above.	[5]

(a) Consider the following facts and rules for rule-based system inference:

(FACT 1 (E)) (FACT 2 (F)) (FACT 3 (C)) (FACT 4 (H)) (RULE 1 (IF ((A) and (C) and (E)) (THEN (D))) (RULE 2 (IF ((H)) (THEN (A))) (RULE 3 (IF ((D) and (F)) (THEN (B)))

Prove that the goal (B) is true and give the sequences of backward rule firings using the rules and facts in the order in which they are given. [15]

(b) Explain briefly what is the relationship between the sequences of firing the rules during forward chaining and backward chaining in for rule-based system inference. [5]

Part B

IS53024A 2018

page 5 of 8

TURN OVER

(a)	Write, in pseudocode, a <i>Simple Tree Search</i> algorithm. Your answer should not specify how a node is chosen for expansion.	[5]
(b)	Modify your answer to (a) so that the pseudocode implements <i>depth-first search</i> .	[5]
(c)	Explain, with reference to four performance measures, the advantages and disadvantages of depth-first search.	[5]
(d)	Modify the depth-first algorithm in part (b) so that it implements <i>depth-limited search</i> .	[5]
(e)	Compare depth-limited search to depth-first search.	[5]
(f)	<i>Iterative deepening search</i> launches a series of depth-limited searches of increasing limit and terminates when the goal is found. Explain how iterative-deepening avoids the disadvantages of depth-limited search.	[5]

- (a) Explain briefly the forward chaining algorithm for rule-based production systems. [6]
- (b) Explain briefly the backward chaining algorithm for rule-based production systems.
- (c) Demonstrate the operation of the forward chaining algorithm for rule-based systems using the following first-order rules and facts:

(RULE 1 (IF (Dog ?x) (THEN (Animal ?x))) (RULE 2 (IF (AnimalLover ?x) (Animal ?y)) (THEN (Feeds ?x ?y))) (RULE 3 (IF (Dog ?x) (Owns ?y ?x)) (THEN (AnimalLover ?y))) (FACT 1 (Dog Dany) (FACT 2 (Owns Jack Dany)

Give the variable bindings at each step of the forward chaining algorithm. Use the rules and facts in the given order. [18]

IS53024A 2018

page 7 of 8

TURN OVER

[6]

(a) Imagine a roomful of identical rational agents playing the following game: each agent has to secretly pick a real number between 0 and 100 inclusive. The winner is the agent who is closest to 2/3 of the average of all the numbers.

What is the pure strategy Nash equilibrium? Explain your answer. [5]

(b) The diagram below shows a game tree for a 2 ply game. Use the *minimax* algorithm to calculate the utilities at nodes P, Q, R and S. [5]

- (c) Assume the terminal nodes are evaluated from left to right, i.e. a, then b, then c etc. Can any of the terminal nodes be pruned? Explain your answer.
- (d) Let a concept description language with 3 attributes be given for symbolic machine learning. Assume that these attributes take the following values:

a1		a2			a3	
	Ι		I	Ι	Ι	I
b	g	С	d	е	a	f

Interpret the behaviour of the candidate elimination algorithm using the following positive and negative training examples:

- 1. (b d a) +) 2. (g e f) -) 3. (b c a) +)
- Illustrate the changes of the boundary sets after the first example. [5]
- Illustrate the changes of the boundary sets after the second example. [5]
- Illustrate the changes of the boundary sets after the third example. [5]

IS53024A 2018

page 8 of 8 END OF EXAMINATION

[5]