UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2018

IS52038A/B

Algorithms \& Data Structures

Duration: 2 hours 15 minutes
Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.
Calculators may be used in this examination; however, calculators which display graphics, text or algebraic equations are not allowed.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Part A

Attempt all questions

Question 1

(a) Define the term implicit data structure, and give one example of an implicit data structure.
(b) A queue Q is initially empty, and then undergoes the following sequence of operations:

Illustrate the state of the variables and data structures after each step of this sequence. (you can assume that the variable x initially has the value 0 .)
(c) Write in pseudocode an algorithm to compute and return the nth term of the series u_{n}, where $u_{0}=1, u_{1}=3$ and $u_{k+2}=2 \times u_{k+1}-u_{k}$.
(d) In order to sort a linear collection of size N, a divide-and-conquer sorting algorithm
performs three sorts of one-third the size, followed by work to combine the three results that is proportional to N.
i. Write down the recurrence relation that expresses $T(N)$, the time to sort a collection of size N, in terms of the time to sort smaller collections and the time to combine the results. ii. Draw the recursion tree to illustrate your answer to part d.(i).
iii. As precisely as possible, give the complexity of this divide-and-conquer sorting algorithm in terms of the size N.

```
: ENQUEUE(Q,34)
```

: ENQUEUE(Q,34)
x}\leftarrow\operatorname{DEQUEUE}(\textrm{Q}
x}\leftarrow\operatorname{DEQUEUE}(\textrm{Q}
ENQUEUE(Q,35)
ENQUEUE(Q,35)
ENQUEUE(Q,x)
ENQUEUE(Q,x)
x: x LEQUEUE(Q)

```
x: x LEQUEUE(Q)
```

(e) The following SELECT function returns the $k^{\text {th }}$ biggest element from the array A.

Require: A :: array of non-negative integers
Require: k :: positive integer
Require: Length(A) k
function $\operatorname{SELECT}(\mathrm{A}, \mathrm{k})$ $\mathrm{S} \leftarrow$ new $\operatorname{Vector}(\mathrm{k})$ $\mathrm{L} \leftarrow \operatorname{LENGTH}(\mathrm{A})$ for $0 \leq \mathrm{i}<\mathrm{k}$ do
$\mathrm{S}[\mathrm{i}] \leftarrow 0$ end for for $0 \leq i<L$ do $\mathrm{v} \leftarrow \mathrm{A}[\mathrm{i}]$ for $0 \leq \mathrm{j}<\mathrm{k}$ do if $v \mathrm{O}_{\mathrm{S}}[\mathrm{j}]$ then $\operatorname{tmp} \leftarrow \mathrm{S}[\mathrm{j}] ; \mathrm{S}[\mathrm{j}] \leftarrow \mathrm{v} ; \mathrm{v} \leftarrow \operatorname{tmp}$ end if $\mathrm{S}[\mathrm{i}] \leftarrow \mathrm{v}$ end for end for return $\mathrm{S}[\mathrm{k}-1]$
end function
i. What should operator \mathbf{O} (on line 10) be for SELECT to correctly return the $\mathrm{k}^{\text {th }}$ biggest element?
ii. With what arguments should select be called to retrieve the median element of A ? (you can assume that the length of A is odd.)
iii. How many times do each of line 5 and line 11 execute in the worst case? (express your answers in terms of the argument k and the length of the array L)
iv. What is the worst-case running time complexity for computing the median of a collection of numbers using this approach? (express your answer using Θ notation).
(f) The directed graph G has a vertex set

$$
V=\{A, B, C, D\}
$$

and edge list

$$
E=\{(A, B),(B, C),(C, D),(D, A),(D, B),(D, C),(D, D)\}
$$

i. Construct the adjacency matrix for the graph G.
ii. How many paths of length 2 are there from vertex D to itself? Justify your answer.
(g) The function $f(N)$ is proportional to $\log (N)$, while the function $g(N)$ is proportional to N. Copy and complete the following table of values for the functions $f(N)$ and $g(N)$ and hence, or otherwise, determine approximately the value of N for which $f(N)=g(N)$.

N	$f(N)$	$g(N)$
2	5	1
4		
8		
16		
32		
64		

Part B

Attempt two questions

Question 2

(a) Describe two possible implementations of strings, and specify as precisely as you can the computational complexity for the LENGTH operation in terms of the number of characters N for each implementation.
(b) Draw the compressed trie representing the set of strings \{ "called", "allied", "carted", "allies" \}.
(c) Describe in detail the sequence of operations on the compressed trie to determine that:
i. string allied is present in the set;
ii. string call is not present in the set.
(d) State the precise worst-case number of character comparisons done in naïve string matching searching for a pattern of size m in a text of size n. Justify your answer, for example by means of a diagram or pseudocode.
(e) The following pseudocode computes the edit distance between two strings.

```
function EDitDistance \(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)\)
        return \(\mathrm{D}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \operatorname{LENGTH}\left(\mathrm{~s}_{1}\right), \operatorname{LENGTH}\left(\mathrm{s}_{2}\right)\right)\)
end function
```

function $D\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{i}, \mathrm{j}\right)$
if $\mathrm{j}=0$ then
return i \times a
else if $i=0$ then
return $\mathrm{j} \times \mathrm{b}$
else if $\mathrm{s}_{1}[\mathrm{i}-1]=\mathrm{s}_{2}[\mathrm{j}-1]$ then
return $D\left(s_{1}, s_{2}, i-1, j-1\right)$
else
$\mathrm{d}_{1} \leftarrow \mathrm{a}+\mathrm{D}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{i}-1, \mathrm{j}\right)$
$\mathrm{d}_{2} \leftarrow \mathrm{~b}+\mathrm{D}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{i}, \mathrm{j}-1\right)$
$\mathrm{d}_{3} \leftarrow \mathrm{c}+\mathrm{D}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{i}-1, \mathrm{j}-1\right)$
return $\operatorname{MiN}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right)$
end if
end function

Describe the meanings of the parameters a, b and c in the algorithm.
(f) i. Describe how you would adapt the algorithm described above to have it use dynamic programming.
ii. State how your adaptation changes the time and space complexity of the algorithm.
(g) For a particular application, the parameters are set as follows: $a=1, b=2$ and $c=2$. Compute the result of EditDistance("acre", "mace"), showing your working.

Question 3

(a) The following pseudocode inserts a new item into a binary max-heap.

```
Require: H :: a binary heap
    function \(\operatorname{INSERT}(\mathrm{H}, \mathrm{k})\)
            heap[H.heapsize] \(\leftarrow \mathrm{k}\)
            \(\mathrm{i} \leftarrow\) H.heapsize
            H.heapsize \(\leftarrow\) H.heapsize +1
            while \(\mathrm{i}>0 \wedge \mathrm{H}[\operatorname{PARENT}(\mathrm{i})]<\mathrm{H}[\mathrm{i}]\) do
                SWAP (H[i],H[PARENT(i)])
                \(\mathrm{i} \leftarrow\) PARENT(i)
            end while
    end function
```

Justify the statement "insertion into a binary heap takes time in $\Theta(\log N)$ "
(b) Write pseudocode for constructing a new heap by inserting elements from an array one-at-a-time. (you can call the above INSERT function within your own algorithm.)
(c) Argue that constructing a binary max-heap by inserting items one-by-one has worst case time complexity in $\Theta(N \log N)$. Illustrate your argument with an example of worst-case behaviour.
(d) Describe BUILDHEAP, the algorithm for constructing a max-heap from an array in-place, with time complexity in $\Theta(N)$, as precisely as you can. (you may wish to use pseudocode and/or diagrams in your answer.)
(e) What are the final contents of the binary heap after running BUILDHEAP on the array $\left[\begin{array}{lllllll}1 & 3 & 7 & 2 & 8 & 4 & 5\end{array}\right]$?
(f) For the hash function $f(x)=17 x+13$ and the reduction function $g(x)=x \bmod 10$, draw the contents of a hash table with 10 buckets after inserting (in this order) $\{2,5,12\}$, assuming collision resolution by linear probing.
(g) What would the contents of the hash table be using the Robin Hood linear probing variant?
(h) Explain the benefits of Robin Hood linear probing over the standard linear probing variant. (you may wish to refer to your answers to parts (f) and (g).)

Question 4

(a) The following pseudocode operates on a linked list, and is intended to return a new list containing the positive elements only.

```
function \(\mathrm{A}(\mathrm{L})\)
    if \(\operatorname{FIRST}(\mathrm{L})>0\) then
        return \(\operatorname{CONS}(\operatorname{FIRST}(\mathrm{L}), \mathrm{A}(\operatorname{REST}(\mathrm{L})))\)
    else
        return \(\mathrm{A}(\operatorname{REST}(\mathrm{L}))\)
    end if
end function
```

What is missing from this algorithm? Write out a corrected algorithm.
(b) Write pseudocode for a function that returns the sum of all the odd integers in a list. (you can assume that the list contains only integers, but you must define how you distinguish odd integers explicitly.)
(c) For the following graph, execute Dijkstra's algorithm to find the shortest path between B and K, showing your working.

(d) Explain why the following graph has no shortest-path between B and K .

(e) Explain how a suitable heuristic for the distance between the current node and the destination node leads to the A^{*} algorithm. Give one heuristic that is commonly used with the A* algorithm.
(f) "Dijkstra's algorithm can be thought of as the A* algorithm with a particular choice of heuristic". Justify this statement.

