Formulae sheet

The quadratic formula

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum of *n* terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Sum of *n* terms of a geometric series

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sine rule

$$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$$

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Question 1 This question is about percentages, fractions, order of operations, rounding and standard form

a) Find

i.	36% as a decimal
ii.	36% as a fraction in simplest form
iii.	. 36% of 2000

- b) Insert brackets to make the following equation true $4 3^2 + 2 \times 5 = 15$
- c) Round the following numbers
 - i. 312.0001 to 2 decimal places
 - ii. 312.0001 to 2 significant figures

[2]

[3]

[1]

- d) Given that a bag of flour weighs 1kg to the nearest 10g find
 - i. The largest possible weight of the flour
 - ii. The smallest possible weight of the flour
- e) Calculate $(1.7 \times 10^{-1}) \times (7.1 \times 10^{-1})$, give your answer in standard form

[2]

Question 2 This question is about algebraic expressions and substitution

a)

- i. Expand and simplify the following expressions
 - 1) (x + y) 8(x y)2) $(x + y) \times (x - 8y)$ 3) $(x + y)^2 \times (x - 8y)$ 4) Evaluate the expression $(x + y) \times (x - 8y)$ when x = 1 and y = 2[1]
- b) Simplify the following expressions, give answers in their simplest form

i.
$$\frac{x+2}{x^2-3x-10}$$

ii.
$$\frac{x^2-3x-10}{(x+2)(x+4)}$$

- c) Simplify the following expressions, give answers as a single fraction in its simplest form
 - i. $1 \frac{2}{x+1}$ ii. $1 \div \frac{2}{x+1}$ [2]
- d) Simplify the following expressions
 - i. $a^2b^2c^{-1}(bc^2)$ ii. $a^2b^2c^{-1}(bc^2)^2$ [2]

Question 3 This question is about number bases, and factors and multiples

a) Convert the following numbers to decimal

	i. 1212 ₃ ii. 1212 ₁₆	[2]
b)	Convert the decimal number 1212_{10}	
	i. to base 8ii. to base 2	[2]
c)	Find the largest decimal number that can be written with 4 hexadecimal digits	[1]
d)	Given that $x000_8 = E00_{16}$ find the value of x where x is an o digit	

- e) Calculate the following
 - i. $10101_2 1101_2$, show your calculation and give your answer in binary
 - ii. $10101_8 1101_8$, show your calculation and give your answer in octal

[3]

Question 4 This question is about logic and sets.

a)

i. Construct and complete truth tables for the following logical expressions

1)
$$(P \rightarrow P) \rightarrow Q$$

2) $P \rightarrow (P \rightarrow Q)$
[4]

ii. Find simple logical expressions that are logically equivalent to

1)
$$(P \rightarrow P) \rightarrow Q$$

2) $P \rightarrow (P \rightarrow Q)$
[2]

b)

i. A, B, and C are subsets of a universal set \mathcal{E} as follows

$$\mathcal{E} = \{x: x \text{ is an integer and } 0 < x \le 10\}$$

$$A = \{4, 5\}$$

$$B = \{1, 2, 3, 4, 5, 6\}$$

$$C = \{4, 5, 6, 9\}$$

List the following sets: 1) $\overline{A \cup B} \cap C$ 2) $A \cup \overline{B \cap C}$

[2]

ii. Draw and shade a Venn diagram to show the following general set

 $\overline{X \cup Y} \cap Z$

Question 5 This question is about linear, simultaneous and quadratic equations

a) Solve the following equations

i.
$$2x - 5 = 5x - 2$$

ii. $2(x - 5) = 5(x - 2)$
[2]

b) Solve the following simultaneous equations

$$\begin{cases} 2x - 5y = 0\\ 5x - 2y = 21 \end{cases}$$
[2]

c)

- i. Factorize the following quadratic expressions
 - 1) $6x^2 16x$ 2) $x^2 + 6x - 16$ 3) $6x^2 - 16x + 10$

[3] ii. Hence or otherwise solve the following quadratic equations

1) $6x^2 - 16x = 0$ 2) $x^2 + 6x - 16 = 0$ 3) $6x^2 - 16x + 10 = 0$

[3]

Question 6 This question is about sequences and series.

- a) Given the sequence 18, 6, 2 ...
 - i. Find an expression for the n^{th} term in the sequence a_n
 - ii. Find an expression for S_n the sum of the first n terms of the sequence
 - iii. Find S_{10} the sum of the first 10 terms of the sequence, give your answer as a fraction or an integer
 - iv. Find S_{∞} the sum to infinity of the sequence

[4]

[3]

- b) Given the series $2 + 6 + 10 + \dots + 402$
 - i. Find the number of terms in the series
 - ii. Find the sum of the series

c) Find the value of the following

$$\sum_{i=3}^{4} (-1)^i \times 3i$$

d) Write the following using sigma notation
$$2^3 + 3^4 + 4^5 + \dots + 10^{11}$$

[2]

[1]

Question 7 This question is about functions

Given the following functions

$$f(x) = \frac{2}{x}, x \neq 0$$
 $g(x) = x^2 - 2$ $h(x) = \frac{x}{2}$

- a) Evaluate the following
 - i. f(2)ii. h(2)iii. g(h(2))
- b) Find expressions for

i.
$$h(4x^2 - 6)$$

ii. $g(h(x))$
iii. $f(h(x))$

c) Find the inverse functions

i.
$$h^{-1}(x)$$

ii. $f^{-1}(x)$
[2]

d) Find the inverse of the function f (h(x))(you may use your answer to b) iii above)

[2]

[3]

[3]

Question 8 This question is about trigonometry

Give your answers to the nearest degree or to 3 significant figures

a) Triangle *ABC* has angle $B = 90^{\circ}$ and sides b = 12cm and c = 5cmFind the length of side *a*

[1]

- b) In the triangle *XYZ* angle $Y = 90^{\circ}$, angle $X = 78^{\circ}$ and side x = 10 m
 - i. Find the length of side *y*
 - ii. Find the size of angle *Z*

[2]

c) The triangle *DEF* has angles $D = 48^{\circ}$ and $F = 57^{\circ}$ and sides e = 16cm. Find the length of side d

[2]

- d)
- i. Draw the graph of $y = 2 \cos x$ for $-180^\circ \le x \le 180^\circ$, give the coordinates of the x and y-intercepts, if any, and mark any asymptotes.

ii. Using your graph, or otherwise, find all the values of x between -180° and 180° for which $2 - \cos x = 1.5$

Question 9 This question is about graphs

- a)
- i. Plot the graph of $y = \frac{1}{x^2} 1$ for $-5 \le x \le 5$ Give the coordinates of the x and y-intercepts, if any, and mark any asymptotes.
- ii. Use your graph to find solutions, if any, to the following equation. Show your method clearly on the graph.

$$\frac{1}{x^2} - 1 = 5$$
 [2]

- b) Given the line segment with end points (-2, 4) and (6, -12)
 - i. Find the length of the line segment between the two points
 - ii. Find the midpoint of the line segment between the two points
 - iii. Find the gradient of the line passing through these points
 - iv. Find the equation of the line passing through these points
 - v. Find the equation of the line that is perpendicular to this line segment that passes through the point (0, -2)

[5]

[3]

END OF EXAMINATION