
UNIVERSITY OF LONDONPRIVATE

GOLDSMITHS COLLEGE

B.Sc. Examination 2017
COMPUTING AND INFORMATION SYSTEMS

IS53011A Language Design and Implementation
Duration:
2 hours 15 minutes

Date and time:

PRIVATE

2
This paper is in two parts: part A and part B. You should answer ALL
questions from part A and TWO questions from part B. Part A carries
40 marks, and each question from part B carries 30 marks. The marks
for each part of a question are indicated at the end of the part in
[.] brackets.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM
Part A. Question 1.

a) Give the main phases and the additional activities according to which

 programming language compilers operate. [5]
b) i) Define the notion of a parse tree in context of programming language design. [4]
 ii) Explain briefly what is the ambiguity problem in the context of programming
 language design? Which programming language grammar is ambiguous? [5]

c) i) Develop five initial strings that can be generated using the regular grammar:
 b (c | b*a)*. [5]
 ii) Develop a regular expression that defines binary numbers that are
 multiples of two. [5]
 d) Define recursively the notion of regular expressions over a given alphabet with
 elements: characters {a,b}, empty string {(}, and relevant operations on them. [6]

 e) Design a nondeterministic finite state automaton (NFA) using the Thompson’s
 construction algorithm for the following regular expression: c (cdb | b)*.
i) Label the states of the NFA automaton. [5]
ii) Label the edges of the NFA automaton. [5]
Part B. Question 2.

a) Which are the four components of a context-free grammar? Explain briefly

 the meaning of each of them. [4]
b) Compare the use of context-free grammars with the use of regular grammars. [6]

c) Interpret the performance of the nonrecursive predictive parser on the input string:

 bbde;de using the following context-free grammar:

P bSe | aP
S PF | d
F ; S | (
 and the following parsing table:

	
	a
	b
	d
	e
	;
	$

	P
	P aP
	P bSe
	
	
	
	

	S
	S PF
	S PF
	 S d
	
	
	

	F
	
	
	
	F (
	F ; S
	F (

 i) Show the stack of the parser at each algorithmic step. [8]
 ii) Show the input of the parser at each algorithmic step. [8]
 iii) Show the output of the parser at each algorithmic step. [4]
Part B. Question 3.

a) Describe briefly the steps of the closure operation used for developing parsing
 tables for bottom-up shift-reduce parsing. [6]

b) Consider the following grammar suitable for bottom-up parsing:
 (1)
P  T=E

 (2) T  y
 (3) E  z+z
 and its corresponding parsing table:

	
	Action
	Goto

	State
	y
	z
	+
	=
	$
	P
	T
	E

	0
	s2
	
	
	
	
	8
	1
	

	1
	
	
	
	s3
	
	
	
	

	2
	
	
	
	r2
	r2
	
	
	

	3
	
	s5
	
	
	
	
	
	4

	4
	
	
	
	
	r1
	
	
	

	5
	
	
	s6
	
	
	
	
	

	6
	
	s7
	
	
	
	
	
	

	7
	
	
	
	
	r3
	
	
	

	8
	
	
	
	
	accept
	
	
	

i) Develop the canonical collection of items from this grammar using the

 sets-of-items construction algorithm. [6x2=12]
 ii) Interpret the moves of the bottom-up shift-reduce parser on the input string:
 y=z+z $ by showing the stack, the input and the output. [8x1.5=12]
Part B. Question 4.
a) i) Which two most important properties should an optimising compiler provide? [4]
 ii) Where does the name “three-address code” in the field of computer programming

 language design comes from? [3]
b) Consider the following implementation of a function that manipulates

 an array of integers:

void Func(int x[])

{

 int i, k, z; i = 1;

 while (i < 5)

 { k = i;

 while (k > 0)

 { z = x[k-1]; x[k-1] = x[k]; x[k] = z; --k; }

 }

 ++i;

}
i) Translate this function into three-address intermediate code, showing each

 program line of code. [15x1=15]
ii) Perform optimization of the developed three-address code by elimination of the
 induction variables in the loops, and also eliminate the dead code. [8]

4
IS53011A 2017

TURN OVER

