UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2017

IS51026A/IS51026B Numerical Maths

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

TURN OVER

Part A Multiple choice

IS51026A/IS51026B 2017 page 2 of ??

Question 1 This question has one correct answer

- (a) What is the decimal value of binary sequence 111111112?
 - i. 255
 - ii. 127
 - iii. 511
 - iv. none of the above

[2]

(b) What is the fractional representation of the following recurring decimal 1.405405?

- i. $\frac{1405}{1000}$ ii. $\frac{281}{200}$
- iii. $\frac{1405}{999}$
- 99
- iv. $\frac{52}{37}$

[2]

[2]

- (c) What is the smallest positive number that is congruent to 8095×471 in modulo 256?
 - i. 3,812,745
 - ii. 14,893
 - iii. 137
 - iv. 32

(d) A triangle XYZ has sides x = 6, y = 8 and angle $X = 42^{\circ}$. The size of angle Y is:

- i. 30°
- ii. 63°
- iii. 49^o
- iv. 37°

[2]

IS51026A/IS51026B 2017 page 3 of ?? TURN OVER

- (e) Convert 9^o to radians.
 - i. $\frac{\pi}{2}$
 - ii. $\frac{\pi}{20}$
 - iii. $\frac{\pi}{4}$
 - iv. $\frac{\pi}{10}$

[2]

[2]

[2]

[2]

- (f) Convert (5, 0) to polar coordinates.
 - i. (5,0)
 - ii. $(5, \pi)$
 - iii. (-5, 0)
 - iv. none of the above

(g) $\log_2(2^6)$ is equal to:

- i. 12
- ii. 2^6
- iii. 8
- iv. 6

(h) The graph of $f(x) = 2^x$:

- i. has y-intercept of 0
- ii. has x-intercept of 1
- iii. passes through the point (0,1)
- iv. passes through the point (1,0)

(i) Given
$$y = x^5 + 4x^3 - 2x^2$$
:
i. $\frac{dy}{dx} = 5x + 12x - 4x$
ii. $\frac{dy}{dx} = 5x^4 + 12x^2 - 4x$
iii. $\frac{dy}{dx} = 13x$
iv. $\frac{dy}{dx} = x^4 + 4x^2 - 2x^1$

[2]

IS51026A/IS51026B 2017 page 4 of ??

(j) You may use the following kinematics equations (suvat equations)

$$s = ut + \frac{1}{2}at^{2}$$
$$s = \frac{1}{2}(u+v)t$$
$$v^{2} = u^{2} + 2as$$
$$v = u + at$$

A particle moves with constant acceleration. It's final velocity is $8ms^{-1}$ and its acceleration is $-2ms^{-2}$. Find the initial velocity if the particle travels a distance of 8 metres.

i. $9.8ms^{-1}$ ii. $5.7ms^{-1}$ iii. $6.9ms^{-1}$ iv. $8.9ms^{-1}$

(k) Calculate the following limit: $\lim_{x\to 5} \frac{x-5}{x^2-25}$.

- i. 10
- ii. does not exist
- iii. 0.1
- iv. 0
- (l) Given $y = \sin 5x$:
 - i. $\frac{dy}{dx} = 5\sin 5x$
 - ii. $\frac{dy}{dx} = 5\cos 4x$
 - iii. $\frac{dy}{dx} = \cos 5x$
 - iv. $\frac{dy}{dx} = 5\cos 5x$

IS51026A/IS51026B 2017 page 5 of ??

TURN OVER

[2]

[2]

[2]

(m) Rewrite the following vector in terms of standard unit vectors: $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

- i. $2\vec{i} \cdot \vec{j} + \vec{k}$ ii. $\begin{pmatrix} 2\vec{i} \\ -1\vec{j} \\ 1\vec{k} \end{pmatrix}$ iii. 2 - 1 + 1
- iv. none of the above

[2]

- (n) Given 2 non-zero vectors \underline{u} and \underline{v} if $|\underline{u} \times \underline{v}| = |\underline{u}| \times |\underline{v}|$ Which of the following must be true?
 - i. \underline{u} and \underline{v} are parallel
 - ii. $\underline{u} = \underline{v}$
 - iii. $\underline{u} \text{ and } \underline{v} \text{ are perpendicular}$
 - iv. none of the above

[2]

(o) Find M^{-1} , the inverse of M where $M = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

i.		0 0 0	$egin{array}{c} 1 \\ 2 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \end{array} $	$\Big)$	
ii.		$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	0 0 1	$\Big)$	
iii.		0 0 0	$-1 \\ 2 \\ 0$		$0 \\ 0 \\ 1$)
iv.	do	es	not	ez	kis	t

IS51026A/IS51026B 2017 page 6 of ??

[2]

(p) Given W=
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Which of the following is the inverse of W?

i.
$$\begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

ii.
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

iii.
$$\begin{pmatrix} \frac{1}{2} & 0 & -1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

iv.
$$\begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

(q) The following matrix represents which of the following transformations? $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$

- i. A translation
- ii. A rotation
- iii. A reflection
- iv. A scaling

[2]

[2]

- (r) Given complex numbers $z_1 = 3 + 2i$ and $z_2 = -2 i$ find $z_1 z_2$.
 - i. 5 + 3iii. -5 - 3iiii. 1+iiv. -1 - i

[2]

IS51026A/IS51026B 2017 page 7 of ?? TURN OVER

- (s) Given the complex number z = -2 i find \overline{z} the complex conjugate of z.
 - i. -2 + iii. 2 - iiii. -1 + 2iiv. 1 - 2i

[2]

- (t) Given the complex number $z = \sqrt{2}(\cos \pi/6 + i \sin \pi/6)$ find z^2 .
 - i. $2(\cos \pi^2/6 + i \sin \pi^2/6)$
 - ii. $2(\cos \pi/3 + i \sin \pi/3)$
 - iii. $2\sqrt{2}(2\cos\pi/6 + 2i\sin\pi/6)$
 - iv. $\sqrt{2}(\cos \pi/3 + i \sin \pi/3)$

[2]

Part B

IS51026A/IS51026B 2017 page 9 of ??

TURN OVER

Que	stic	2 Bases, Modular Arithmetic & Trigonometry	
(a)	i.	Express the decimal number $(347)_{10}$ in base 2	[1]
	ii.	Express the binary number $(1000111.011)_2$ as a decimal number	[2]
	iii.	Express the decimal number $(281.75)_{10}$ as	
		(1) a binary number(2) a hexadecimal number	[2]
	iv.	Express the octal number $(574.2)_8$ as a decimal number	[2]
	v.	Working in base 16 and showing all your working, compute the following:	
		$(AB2)_{16} + (161)_{16} - (FF)_{16}$	
			[3]
(b)	i.	Find the smallest positive integer modulo 13 that is congruent to	
		(1) 54 (2)271	[2]
	ii.	Find the remainder on division by 13 of	
		(1) 54 + 271	
		(2) 54×271	[]
		$(3) 271^{19}$	[6]
	iii.	Find the following	
		 (1) the additive inverse of 5 modulo 13 (2) the multiplicative inverse of 5 module 12 	[9]
		(2) the multiplicative inverse of 5 modulo 15	[2]
(c)	i.	Triangle ABC is an isosceles triangle (has 2 equal sides). Side $a = 6cm$ and angle $A = 80^{\circ}$	
		(1) Find all 3 possible values for angle B(2) Hence find all 3 possible values for the length of side b	[2]
	ii.	Let $f(x) = 3\cos(x)$ and $g(x) = \sin(2x)$	
		(1) Find the amplitude, frequency and period for	
		• $f(x)$	
		• $g(x)$	[6]
		(2) By plotting the graphs of $f(x)$ and $q(x)$, or otherwise find all the values	ျပ
		of x between $-\pi$ and π for which $3\cos(x) - \sin(2x) = 0$	[2]

IS51026A/IS51026B 2017 page 10 of ??

Question 3 Functions, Graph Sketching & Vectors

(a) i. Find numerical values for the following

- (1) $\log_2 1024$ (2) $\log_{1024} 2$
- (3) $\log_2(\frac{1}{2})$ [3]
- ii. Sketch the graphs of

(1)
$$f(x) = 2^x$$

(2) $g(x) = 2^{x-1}$ [3]

iii. Find the inverse functions

(1)
$$f^{-1}(x)$$

(2) $g^{-1}(x)$ [4]

(b) i. Find the following limits

$$(1)\lim_{x \to 0} \frac{x-4}{x^2-16} (2) \lim_{x \to +4} \frac{x-4}{x^2-16} (3)\lim_{x \to \infty} \frac{x-4}{x^2-16} (4)\lim_{x \to -4} \frac{x-4}{x^2-16}$$
[4]

ii. Given the following function $f(x) = x^3 - 3x^2$

- (1) Find the values of x for which f(x) = 0
- (2) Differentiate f(x)
- (3) Hence find any stationary points of f(x) and determine their nature
- (4) Sketch f(x)

(c) Given
$$\underline{v}_1 = \begin{pmatrix} 2\\ 3\\ 0 \end{pmatrix}$$
 and $\underline{v}_2 = \begin{pmatrix} -1\\ 0\\ 2 \end{pmatrix}$

- i. Find the magnitudes of \underline{v}_1 and \underline{v}_2
- ii. Find the dot product of \underline{v}_1 and \underline{v}_2
- iii. Hence find the angle between \underline{v}_1 and \underline{v}_2
- iv. Find \underline{v}_3 and \underline{v}_2 the cross product (vector product) of \underline{v}_1 and \underline{v}_2
- v. State the angle between \underline{v}_3 and \underline{v}_1

[10]

[6]

IS51026A/IS51026B 2017 page 11 of ?? TURN OVER

Question 4 Matrices & Complex Numbers

(a) Let A be a 3x3 matrix corresponding to a translation of 3 units in the x direction and -1 unit in the y direction. Let B be a 3x3 matrix corresponding to a scaling of factor 2 in the x direction and factor 3 in the y direction

i.	. Write down A and B	[2]
ii.	Find the inverse matrices A^{-1} and B^{-1}	[3]
iii.	. Find the single matrix C which represents the transformation represented by matrix B followed by transformation represented by matrix A	[3]
iv.	. How would the combined transformation represented by the matrix C transform the following three points which represent a triangle in the Cartesian space: $(0,0)$, $(2,0)$ and $(2,1)$?	[3]
v.	. Find the inverse matrix C^{-1}	[4]
(b) G	iven complex numbers $z_1 = 3 + 2i$ and $z_2 = 5 - 2i$	
i.	. Find	
	(1) $z_1 + z_2$	
	(2) $z_1 - z_2$	
	(3) $z_1 \times z_2$	
	(4) $\frac{z_1}{z_2}$	[6]
ii.	. Convert z_1	
	(1) to polar form	
	(2) to exponential form	[4]
iii.	Hence find	
	(1) z_1^{3}	
	(2) All solutions to $z_1^{\frac{1}{3}}$	[5]

page 12 of **??**