UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2017

IS51026A/IS51026B
Numerical Maths
Duration: 2 hours 15 minutes
Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Part A
 Multiple choice

Question 1 This question has one correct answer
(a) What is the decimal value of binary sequence 11111111_{2} ?
i. 255
ii. 127
iii. 511
iv. none of the above
(b) What is the fractional representation of the following recurring decimal 1.405405?
i. $\frac{1405}{1000}$
ii. $\frac{281}{200}$
iii. $\frac{1405}{999}$
iv. $\frac{52}{37}$
(c) What is the smallest positive number that is congruent to 8095×471 in modulo $256 ?$
i. $3,812,745$
ii. 14,893
iii. 137
iv. 32
(d) A triangle XYZ has sides $x=6, y=8$ and angle $X=42^{\circ}$. The size of angle Y is:
i. 30°
ii. 63°
iii. 49°
iv. 37°
(e) Convert 9° to radians.
i. $\frac{\pi}{2}$
ii. $\frac{\pi}{20}$
iii. $\frac{\pi}{4}$
iv. $\frac{\pi}{10}$
(f) Convert $(5,0)$ to polar coordinates.
i. $(5,0)$
ii. $(5, \pi)$
iii. $(-5,0)$
iv. none of the above
(g) $\log _{2}\left(2^{6}\right)$ is equal to:
i. 12
ii. 2^{6}
iii. 8
iv. 6
(h) The graph of $f(x)=2^{x}$:
i. has y-intercept of 0
ii. has x-intercept of 1
iii. passes through the point $(0,1)$
iv. passes through the point $(1,0)$
(i) Given $y=x^{5}+4 x^{3}-2 x^{2}$:
i. $\frac{d y}{d x}=5 x+12 x-4 x$
ii. $\frac{d y}{d x}=5 x^{4}+12 x^{2}-4 x$
iii. $\frac{d y}{d x}=13 x$
iv. $\frac{d y}{d x}=x^{4}+4 x^{2}-2 x^{1}$
(j) You may use the following kinematics equations (suvat equations)
$s=u t+\frac{1}{2} a t^{2}$
$s=\frac{1}{2}(u+v) t$
$v^{2}=u^{2}+2 a s$
$v=u+a t$
A particle moves with constant acceleration. It's final velocity is $8 \mathrm{~ms}^{-1}$ and its acceleration is $-2 m s^{-2}$. Find the initial velocity if the particle travels a distance of 8 metres.
i. $9.8 m s^{-1}$
ii. $5.7 \mathrm{~ms}^{-1}$
iii. $6.9 \mathrm{~ms}^{-1}$
iv. $8.9 m s^{-1}$
(k) Calculate the following limit: $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-25}$.
i. 10
ii. does not exist
iii. 0.1
iv. 0
(l) Given $y=\sin 5 x$:
i. $\frac{d y}{d x}=5 \sin 5 x$
ii. $\frac{d y}{d x}=5 \cos 4 x$
iii. $\frac{d y}{d x}=\cos 5 x$
iv. $\frac{d y}{d x}=5 \cos 5 x$
(m) Rewrite the following vector in terms of standard unit vectors: $\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$
i. $2 \vec{i}-\vec{j}+\vec{k}$
ii. $\left(\begin{array}{c}2 \vec{i} \\ -1 \vec{j} \\ 1 \vec{k}\end{array}\right)$
iii. $2-1+1$
iv. none of the above
(n) Given 2 non-zero vectors \underline{u} and \underline{v} if $|\underline{u} \times \underline{v}|=|\underline{u}| \times|\underline{v}|$

Which of the following must be true?
i. \underline{u} and \underline{v} are parallel
ii. $\underline{u}=\underline{v}$
iii. \underline{u} and \underline{v} are perpendicular
iv. none of the above
(o) Find M^{-1}, the inverse of M where $M=\left(\begin{array}{ccc}2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
i. $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
ii. $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
iii. $\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
iv. does not exist
(p) Given $\mathrm{W}=\left(\begin{array}{ccc}2 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right)$

Which of the following is the inverse of W ?
i. $\left(\begin{array}{ccc}1 & 0 & 2 \\ -1 & 2 & 0 \\ 1 & 0 & 0\end{array}\right)$
ii. $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 1\end{array}\right)$
iii. $\left(\begin{array}{ccc}\frac{1}{2} & 0 & -1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1\end{array}\right)$
iv. $\left(\begin{array}{ccc}\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1\end{array}\right)$
(q) The following matrix represents which of the following transformations? $\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right)$
i. A translation
ii. A rotation
iii. A reflection
iv. A scaling
(r) Given complex numbers $z_{1}=3+2 i$ and $z_{2}=-2-i$ find $z_{1}-z_{2}$.
i. $5+3 i$
ii. $-5-3 i$
iii. $1+i$
iv. $-1-i$
(s) Given the complex number $z=-2-i$ find \bar{z} the complex conjugate of z.
i. $-2+i$
ii. $2-i$
iii. $-1+2 i$
iv. $1-2 i$
(t) Given the complex number $z=\sqrt{2}(\cos \pi / 6+i \sin \pi / 6)$ find z^{2}.
i. $2\left(\cos \pi^{2} / 6+i \sin \pi^{2} / 6\right)$
ii. $2(\cos \pi / 3+i \sin \pi / 3)$
iii. $2 \sqrt{2}(2 \cos \pi / 6+2 i \sin \pi / 6)$
iv. $\sqrt{2}(\cos \pi / 3+i \sin \pi / 3)$

Part B

Question 2 Bases, Modular Arithmetic \& Trigonometry

(a) i. Express the decimal number $(347)_{10}$ in base 2
ii. Express the binary number $(1000111.011)_{2}$ as a decimal number
iii. Express the decimal number $(281.75)_{10}$ as
(1) a binary number
(2) a hexadecimal number
iv. Express the octal number $(574.2)_{8}$ as a decimal number
v. Working in base 16 and showing all your working, compute the following:

$$
(A B 2)_{16}+(161)_{16}-(F F)_{16}
$$

(b) i. Find the smallest positive integer modulo 13 that is congruent to
(1) 54
(2) 271
ii. Find the remainder on division by 13 of
(1) $54+271$
(2) 54×271
(3) 271^{19}
iii. Find the following
(1) the additive inverse of 5 modulo 13
(2) the multiplicative inverse of 5 modulo 13
(c) i. Triangle $A B C$ is an isosceles triangle (has 2 equal sides). Side $a=6 \mathrm{~cm}$ and angle $A=80^{\circ}$
(1) Find all 3 possible values for angle B
(2) Hence find all 3 possible values for the length of side b
ii. Let $f(x)=3 \cos (x)$ and $g(x)=\sin (2 x)$
(1) Find the amplitude, frequency and period for

- $f(x)$
- $g(x)$
(2) By plotting the graphs of $f(x)$ and $g(x)$, or otherwise find all the values of x between $-\pi$ and π for which $3 \cos (x)-\sin (2 x)=0$

Question 3 Functions, Graph Sketching \& Vectors
(a) i. Find numerical values for the following
(1) $\log _{2} 1024$
(2) $\log _{1024} 2$
(3) $\log _{2}\left(\frac{1}{2}\right)$
[3]
ii. Sketch the graphs of
(1) $f(x)=2^{x}$
(2) $g(x)=2^{x-1}$
iii. Find the inverse functions
(1) $f^{-1}(x)$
(2) $g^{-1}(x)$
(b) i. Find the following limits
(1) $\lim _{x \rightarrow 0} \frac{x-4}{x^{2}-16}$
(2) $\lim _{x \rightarrow+4} \frac{x-4}{x^{2}-16}$
(3) $\lim _{x \rightarrow \infty} \frac{x-4}{x^{2}-16}$
(4) $\lim _{x \rightarrow-4} \frac{x-4}{x^{2}-16}$
ii. Given the following function $f(x)=x^{3}-3 x^{2}$
(1) Find the values of x for which $f(x)=0$
(2) Differentiate $f(x)$
(3) Hence find any stationary points of $f(x)$ and determine their nature
(4) Sketch $f(x)$
(c) Given $\underline{v}_{1}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$ and $\underline{v}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$
i. Find the magnitudes of \underline{v}_{1} and \underline{v}_{2}
ii. Find the dot product of \underline{v}_{1} and \underline{v}_{2}
iii. Hence find the angle between \underline{v}_{1} and \underline{v}_{2}
iv. Find \underline{v}_{3} and \underline{v}_{2} the cross product (vector product) of \underline{v}_{1} and \underline{v}_{2}
v. State the angle between \underline{v}_{3} and \underline{v}_{1}

Question 4 Matrices \& Complex Numbers

(a) Let A be a 3 x 3 matrix corresponding to a translation of 3 units in the x direction and -1 unit in the y direction. Let B be a 3 x 3 matrix corresponding to a scaling of factor 2 in the x direction and factor 3 in the y direction
i. Write down A and B
ii. Find the inverse matrices A^{-1} and B^{-1}
iii. Find the single matrix C which represents the transformation represented by matrix B followed by transformation represented by matrix A
iv. How would the combined transformation represented by the matrix C transform the following three points which represent a triangle in the Cartesian space: $(0,0),(2,0)$ and $(2,1)$?
v. Find the inverse matrix C^{-1}
(b) Given complex numbers $z_{1}=3+2 i$ and $z_{2}=5-2 i$
i. Find
(1) $z_{1}+z_{2}$
(2) $z_{1}-z_{2}$
(3) $z_{1} \times z_{2}$
(4) $\frac{z_{1}}{z_{2}}$
ii. Convert z_{1}
(1) to polar form
(2) to exponential form
iii. Hence find
(1) $z_{1}{ }^{3}$
(2) All solutions to $z_{1}{ }^{\frac{1}{3}}$

