UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2017

IS51021B Problem Solving For Computer Science

Duration: 2 hours 15 minutes
Date and time:

This paper is in two parts: part A and part B.
You should answer ALL questions from part A and TWO questions from part B.
Part A carries 40 marks, and each question from part B carries 30 marks.
The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.
You are not allowed to use any electronic device (such as mobile telephones, calculators, laptops, tablets) during the exam.

Part A
 You should attempt all of these questions

Each question has one correct answer.

(a) What does execution of the following code fragment produce on the screen:

```
\(a=0\)
\(\mathrm{b}=2\)
\(\mathrm{c}=0\)
print('(a/b)/(1/c) =', float(a/b)*C)
```

i. $(a / b) /(1 / c)=$
ii. $(a / b) /(1 / c)=0$
iii. $(a / b) /(1 / c)=0.0$
iv. A syntax error
v. A run-time error
vi. None of the above
(b) What is the final value of variable \mathbf{c} after the following statements have been executed:

$$
\begin{aligned}
& (a, b, c)=(0,-1,2) \\
& b *=2 \\
& c=a-b-c \\
& (a, b, c)=(a, c, b)
\end{aligned}
$$

i. 0
ii. 1
iii. -1
iv. 2
v. -2
vi. None of the above
(c) Consider the following code fragment:

```
import random
x = random.randrange(0,2)
```

After its execution, the variable x will contain:
i. A (pseudo)random integer N such that $0 \leq \mathrm{N}<2$
ii. A (pseudo)random integer N such that $0 \leq \mathrm{N}<1$
iii. A (pseudo)random floating point number in the range $[0.0,2.0$)
iv. A (pseudo)random floating point number in the range $[0.0,1.0$)
v. None of the above
(d) What does execution of the following code fragment produce on the screen:

```
x = 0
if x - 2 <-1:
    print(2 ** 3 == 7)
else:
    print(not x -2 <-1)
```

i. An error
ii. "2 ** $3==7$ "
iii. "not $x-2<-1 "$
iv. False
v. "True"
(e) Which sequence will the following code produce in output (assume the numbers separated by commas are printed on a different lines):

```
x = -2
y = -1
for i in range(4,y,x):
    print(i)
```

i. $4,2,0,-2$
ii. $4,2,0$
iii. 4,2
iv. 2, 0
v. 2
vi. None of the above.
(f) What will be printed on the screen as a result of executing the following lines of code?

```
def div(x,y):
        print(y%x)
result = div(2,5)
print(result)
```

i. $\quad 1$
ii. 2
iii. 5
iv. An error message
v. None of the above
(g) Which message will be printed on the screen by executing the following commands:

```
    s = "Point " + str(3.50) + ") 'Tab' is '\t', and not '/t'"
    print(s)
i. Point 3.50) Tab is '\t', and not ' '
ii. Point 3.5) Tab is ' ', and not ' '
iii. Point 3.50) Tab is '\t', and not '/t'
iv. Point 3.5) Tab is ' ', and not '/t'
v. Point 3.5 ) Tab is '\t', and not '/t'
vi. Point 3.5 ) Tab is ' ', and not '/t'
```

(h) What does execution of the code extract below produce?

```
b = [ ]
a = [[1,2,3], True, [1,2,3]]
b}=\textrm{a
b.append("False")
print(a[3][1])
```

i. An error message
ii. 1
iii. 2
iv. 3
v. F
vi. a
vii. "False"

Part B

You should attempt two of these three questions

Question B1

(a) What is the output of the following program? Justify your answer with an explanation.

```
def swap(x,y):
        temp = x
    x = y
    y = x
def main(b,a):
        swap(a,b)
        print(a,b)
a = 2
b = 3
main(a,b)
```

(b) Consider the algorithm specified by the following flowchart (assume n integer and $n>0$):

i). Which value does the algorithm print in output for any given input $n>0$?
ii). Write a Python implementation of the algorithm which uses a 'for' loop to compute the same result.
iii). Write a Python implementation of the algorithm which uses a 'while' loop to calculate the same result.

Question B2

(a)
i). What is the result returned by the following Python function do? Assume the input parameter x is a string.

```
def secret(x):
    i = len(x)-1
    while i >= 0:
        x = x + x[i]
        i -= 1
    return x
```

ii). Will the above function work also if x is a list of integers? Justify your answer.
(b) Explain how the "bubblesort" algorithm works. Provide an example involving sorting a list of integers.
(c) Write a recursive function that accepts as input a (possibly empty) list of numbers and returns the sum of the squares of all the numbers contained in the list.

For example, if the list given is $[1,3.5,-0.7]$, the value returned should be $(1)^{2}+(3.5)^{2}+(-0.7)^{2}$, i.e., 13.74

Question B3

(a) Explain what happens to the internal representation of names and objects that Python maintains when the following statements are executed:
i).

```
tess = turtle.Turtle()
john = turtle.Turtle()
```

ii).

```
tess = john
```

iii).

```
import turtle
```

(b) Consider the following program for drawing an equilateral triangle having sides of 3 different colours (refer also to the figure on the right, where the triangle's exterior angles are highlighted):

```
import turtle
def drawIt(t):
    for i in [0,1,2]:
            t.color(colrs[i])
            t.forward(l00)
            t.left(120)
w = turtle.Screen()
tess = turtle.Turtle()
colrs = ['red', 'blue', 'green']
drawIt(tess)
```


Modify the function "drawIt ()" to make it more abstract and generic, so that it can be used to draw:
i). an equilateral triangle having arbitrary side length x (i.e., x should be an additional input parameter of the revised function drawIt ());
ii). an equilateral triangle having side of arbitrary length x as above, and such that each side is assigned a color chosen at random amongst red, blue and green;
iii). any regular polygon of n sides, each of length x and color chosen at random as in point ii). above. Side length x and exterior angle a (in degrees) should be passed as parameters to the revised function, drawIt (). (Recall that the exterior angles of a regular polygon always add up to 360°).
(c). Write a program that draws the figure shown below (assume each segment is 100 pixels long):

End of Exam

