UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2017

IS51021B Problem Solving For Computer Science

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

You are not allowed to use any electronic device (such as mobile telephones, calculators, laptops, tablets) during the exam.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Part A You should attempt all of these questions

Each question has one correct answer.

(a) What does execution of the following code fragment produce on the screen:

```
a = 0
b = 2
c = 0
print('(a/b)/(1/c) =', float(a/b)*c)
i. (a/b)/(1/c) = 0
ii. (a/b)/(1/c) = 0
iii. (a/b)/(1/c) = 0.0
iv. A syntax error
v. A run-time error
vi. None of the above
```

[5]

(b) What is the final value of variable c after the following statements have been executed:

```
(a,b,c) = (0,-1,2)
b *= 2
c = a-b-c
(a,b,c) = (a,c,b)
i. 0
ii. 1
iii. -1
iv. 2
v. -2
vi. None of the above
```

[5]

(c) Consider the following code fragment:

```
import random
x = random.randrange(0,2)
```

After its execution, the variable x will contain:

- i. A (pseudo)random integer N such that $0 \le N \le 2$
- ii. A (pseudo)random integer N such that $0 \le N \le 1$
- iii. A (pseudo)random floating point number in the range [0.0, 2.0)
- iv. A (pseudo)random floating point number in the range [0.0, 1.0)
- v. None of the above

[5]

(d) What does execution of the following code fragment produce on the screen:

```
x = 0
if x - 2 <-1:
    print(2 ** 3 == 7)
else:
    print(not x -2 <-1)
i. An error
ii. "2 ** 3 == 7"
iii. "not x -2 <-1"
iv. False
y. "True"
```

[5]

(e) Which sequence will the following code produce in output (assume the numbers separated by commas are printed on a different lines):

- i. 4, 2, 0, -2 ii. 4, 2, 0 iii. 4, 2
- iv. 2,0 v. 2
- vi. None of the above.

[5]

(f) What will be printed on the screen as a result of executing the following lines of code?

```
def div(x,y):
    print(y%x)
result = div(2,5)
print(result)
i. 1
ii. 2
iii. 5
iv. An error message
v. None of the above
```

[5]

(g) Which message will be printed on the screen by executing the following commands:

```
s = "Point " + str(3.50) + ") 'Tab' is '\t', and not '/t'"
print(s)
i. Point 3.50) Tab is '\t', and not ' '
ii. Point 3.5) Tab is ' ', and not ' '
iii. Point 3.50) Tab is '\t', and not '/t'
iv. Point 3.5) Tab is ' ', and not '/t'
v. Point 3.5 ) Tab is '\t', and not '/t'
[5]
```

(h) What does execution of the code extract below produce?

```
b = []
a = [[1,2,3], True, [1,2,3]]
b = a
b.append("False")
print(a[3][1])
i. An error message
ii. 1
iii. 2
iv. 3
v. F
vi. a
vii. "False"
```

Part B

You should attempt two of these three questions

Question B1

(a) What is the output of the following program? Justify your answer with an explanation.

```
def swap(x,y):
    temp = x
    x = y
    y = x

def main(b,a):
    swap(a,b)
    print(a,b)

a = 2
b = 3
main(a,b)
```

[10]

(b) Consider the algorithm specified by the following flowchart (assume *n* integer and n > 0):

i). Which value does the algorithm print in output for any given input n > 0?	[4]
ii). Write a Python implementation of the algorithm which uses a 'for' loop to compute the same result.	[8]
iii) Write a Python implementation of the algorithm	

iii). Write a Python implementation of the algorithm which uses a **'while' loop** to calculate the same result.

[8]

Question B2

(a)

i). What is the result returned by the following Python function do? Assume the input parameter x is a string.

def secret(x):
 i = len(x)-1
 while i >= 0:
 x = x + x[i]
 i -= 1
 return x

[6]

ii). Will the above function work also if x is a list of integers? Justify your answer.

[8]

(b) Explain how the "bubblesort" algorithm works. Provide an example involving sorting a list of integers.

[8]

(c) Write a recursive function that accepts as input a (possibly empty) list of numbers and returns the sum of the squares of all the numbers contained in the list.

For example, if the list given is [1, 3.5, -0.7], the value returned should be $(1)^2 + (3.5)^2 + (-0.7)^2$, i.e., 13.74

[8]

Question B3

(a) Explain what happens to the internal representation of names and objects that Python maintains when the following statements are executed:

```
i).
   tess = turtle.Turtle()
   john = turtle.Turtle()
   [3]
ii).
   tess = john
   [3]
iii).
   import turtle
   [4]
```

(b) Consider the following program for drawing an equilateral triangle having sides of 3 different colours (refer also to the figure on the right, where the triangle's exterior angles are highlighted):

Modify the function "drawIt()" to make it more abstract and generic, so that it can be used to draw:

- i). an equilateral triangle having arbitrary side length x (i.e., x should be an additional input parameter of the revised function drawlt());
- [2]
- ii). an equilateral triangle having side of arbitrary length x as above, and such that each side is assigned a color chosen at random amongst red, blue and green;

[3]

iii). any regular polygon of n sides, each of length x and color chosen at random as in point ii). above. Side length x and exterior angle a (in degrees) should be passed as parameters to the revised function, drawIt(). (Recall that the exterior angles of a regular polygon always add up to 360°).

[5]

(c). Write a program that draws the figure shown below (assume each segment is 100 pixels long):

[10]

End of Exam