UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2016

IS51026A Numerical Mathematics

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS51026A 2016

page 1 of 7

TURN OVER

Part A

Multiple choice

IS51026A 2016

page 2 of 7

Question 1	Each quest	ion has one correct answer		
(a) The bin	ary number 11	1111111 in decimal is		
i. 2^8				
ii. $2^8 -$	1			
iii. 2^7				
iv. none	e of the above			
			[4	4]
(b) The bin	ary number 10	101.1 in decimal is		
i. 20.5				
ii. 20.2	5			
iii. 21.5				
iv. none	e of the above			
			[4	4]
(c) It is cor	rect to say (in	base 2) that $0111 > 111?$		
i. True)			
ii. False	e			
			[4	4]
(d) It is cor	rect to say (in	base 2) that $1000 > 0111?$		
i. True)			
ii. False	Э			
			[4	4]
(e) Which o	one of the follo	wing sets is a subset of $\{2, 4, 6, 8,$	$10, 12\}?$	
i. {14}				
ii. {2,3				
iii. {4,8	-			
iv. {1,3				
			[4	4]
(f) Let A, B $A \oplus B$	B be two subse	ets of a universal set U . Which of	of the following describes	
i. the s	set of elements	contained in A and in B.		
		contained in A or in B.		
IS51026A	2016	page 3 of 7	TURN OVER	

- iii. the set of elements containted in A or in B but not in both.
- iv. the set of elements contained in A but not in both.
- (g) Let A be a set of some elements. Which one of the following is correct:
 - i. $A \in \mathcal{P}(A)$ ii. $A \subseteq \mathcal{P}(A)$
 - iii. $\emptyset \subseteq \mathcal{P}(A)$
 - iv. None of the above

[4]

[4]

- (h) Which of the following numbers is an irrational number.
 - i. 2.00005 ii. π iii. $\frac{1}{2}$ iv. 3.1212...
- (i) If $f(x) = 3x^2 2x 5$, what is the value of f (-1)?
 - i. -4 ii. -10 iii. -6

iv. 0

[4]

[4]

- (j) The value of the angle 235 in radian is
 - i. $\frac{\pi}{235}$ ii. $\frac{235}{\pi}$ iii. $\frac{235\pi}{180}$
 - iv. $\frac{180\pi}{255}$

[4]

Part B

IS51026A 2016

page 4 of 7

Question 2 Number Systems & Sets

(a) i. Working in base 2 and showing all your working, compute the following:

$$(10101)_2 + (11011)_2 - (101)_2$$

- ii. Express the hexadecimal number $(D08.1C)_{16}$ in base 2.
- iii. Express the decimal number $(347)_{10}$ in base 2.
- iv. Express the binary number $(110101001.011)_2$ as
 - a decimal number
 - a hexadecimal number
 - $\bullet\,$ an octal number

[12]

(b) i. Describe the set A by the listing method.

$$A = \{3r - 1 : r \in Zand - 1 < r \le 5\}.$$

ii. Describe the set B by the rule of inclusion method where $B = \{2, 4, 8, 16, \dots 1024\}$

[6]

- (c) Let A and B and C be subsets of a universal set \mathcal{U} .
 - i. Draw a labelled Venn diagram depicting A, B, C in such a way that they divide \mathcal{U} into 8 disjoint regions.
 - ii. The subset $X \subseteq \mathcal{U}$ is defined by the following membership table:

A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Shade the region X on your diagram. Describe the region you have shaded in set notation as simply as you can.

IS51026A 2016

page 5 of 7

[12]

Question 3 Functions

- (a) Let $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{a, b, c, d\}$ two sets. Let f be a function defined as follows:
 - $f: A \to B$

- i. Draw the arrow diagram to represent the function **f** .
- ii. List the co-domain and the range of f.
- iii. Find the ancestor (pre-image) of d.
- iv. Show that f is not a one to one function.
- v. Show that f is an onto function.
- (b) Consider the function $f(x) = 2\sin 2x$.
 - i. What is the period of the function f?
 - ii. Find the amplitude of the function f?
 - iii. Fill in the missing values in the following table

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
$2\sin 2x$					

iv. Plot the graph of f for x in $[-\pi, \pi]$.

[10]

- (c) Let $f(x) = x^3 3x + 2$
 - i. Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$
 - ii. Work out the first and second derivatives of the function f (f' and f").
 - iii. Find all stationary points of the function f and their nature i.e. maxima, minima or inflection point.
 - iv. Plot the curve of the function f.

[10]

IS51026A 2016

page 6 of 7

[10]

Question 4 Matrices & Transformations

(a) Given the vectors $\vec{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \vec{i} + \vec{j}$ and $\vec{v_2} = \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix} = -\vec{i} + \sqrt{3}\vec{j}$

- i. Find the magnitudes of $\vec{v_1}$ and $\vec{v_2}$.
- ii. Find the unit vector of $\vec{v_1}$ and $\vec{v_2}$.
- iii. Work out the dot product of $\vec{v_1}$ and $\vec{v_2}$ ($\vec{v_1}$. $\vec{v_2}$).
- iv. Hence, find the angle between $\vec{v_1}$ and $\vec{v_2}$.
- (b) Consider the following matrices:

$$A = \begin{pmatrix} -1 & 2 \\ 1 & -3 \end{pmatrix} \quad B = \begin{pmatrix} -3 & -2 \\ -1 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -1 & 3 \\ 2 & -2 & 0 \end{pmatrix}$$

- i. Write down the 2 by 2 and the 3 by 3 identity matrices, $I_{2\times 2}$ and $I_{3\times 3}$.
- ii. Compute AB and hence write B in terms of A.
- iii. Explain why CA is not defined.
- iv. Work out the inverse matrix, M^{-1} , of the following matrix:

$$M = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{array}\right)$$

- (c) Let A be a 3x3 homogeneous matrix transformation corresponding to an anti-clockwise rotation about the z-axis by an angle $\frac{\pi}{2}$ and let B be a 3x3 homogeneous matrix transformation to translate the x and y coordinates by a 3 and 2 respectively.
 - i. Write down A, B
 - ii. Find the single homogeneous matrix, C, which represents transformation represented by the matrix A followed by transformation represented by the matrix B.
 - iii. How would the combined transformation represented by the matrix C transform the following three points which represent a triangle in the Cartesian space: (0,0), (1,1) and (1,2)?
 - iv. Find the matrix A^{-1}

[10]

[10]

[10]