UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2016

IS51026A
Numerical Mathematics
Duration: 2 hours 15 minutes
Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED
FROM THE EXAMINATION ROOM

Part A
 Multiple choice

Question 1 Each question has one correct answer
(a) The binary number 11111111 in decimal is
i. 2^{8}
ii. $2^{8}-1$
iii. 2^{7}
iv. none of the above
(b) The binary number 10101.1 in decimal is
i. 20.5
ii. 20.25
iii. 21.5
iv. none of the above
(c) It is correct to say (in base 2) that $0111>111$?
i. True
ii. False
(d) It is correct to say (in base 2) that $1000>0111$?
i. True
ii. False
(e) Which one of the following sets is a subset of $\{2,4,6,8,10,12\}$?
i. $\{14\}$
ii. $\{2,3,4\}$
iii. $\{4,8,12\}$
iv. $\{1,3,5\}$
(f) Let A, B be two subsets of a universal set U. Which of of the following describes $A \oplus B$
i. the set of elements contained in A and in B .
ii. the set of elements contained in A or in B .
iii. the set of elements containted in A or in B but not in both.
iv. the set of elements contained in A but not in both.
(g) Let A be a set of some elements. Which one of the following is correct:
i. $A \in \mathcal{P}(A)$
ii. $A \subseteq \mathcal{P}(A)$
iii. $\emptyset \subseteq \mathcal{P}(A)$
iv. None of the above
(h) Which of the following numbers is an irrational number.
i. 2.00005
ii. π
iii. $\frac{1}{2}$
iv. $3.1212 \ldots$
(i) If $f(x)=3 x^{2}-2 x-5$, what is the value of $\mathrm{f}(-1)$?
i. -4
ii. -10
iii. -6
iv. 0
(j) The value of the angle 235 in radian is
i. $\frac{\pi}{235}$
ii. $\frac{235}{\pi}$
iii. $\frac{235 \pi}{180}$
iv. $\frac{180 \pi}{255}$

Part B

Question 2 Number Systems \& Sets
(a) i. Working in base 2 and showing all your working, compute the following:

$$
(10101)_{2}+(11011)_{2}-(101)_{2}
$$

ii. Express the hexadecimal number $(D 08.1 C)_{16}$ in base 2 .
iii. Express the decimal number $(347)_{10}$ in base 2.
iv. Express the binary number $(110101001.011)_{2}$ as

- a decimal number
- a hexadecimal number
- an octal number
(b) i. Describe the set A by the listing method.

$$
A=\{3 r-1: r \in \text { Zand }-1<r \leq 5\}
$$

ii. Describe the set B by the rule of inclusion method where $B=\{2,4,8,16, \ldots .1024\}$
(c) Let A and B and C be subsets of a universal set \mathcal{U}.
i. Draw a labelled Venn diagram depicting A, B, C in such a way that they divide \mathcal{U} into 8 disjoint regions.
ii. The subset $X \subseteq \mathcal{U}$ is defined by the following membership table:

A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Shade the region X on your diagram. Describe the region you have shaded in set notation as simply as you can.

Question 3 Functions
(a) Let $A=\{1,2,3,4,5,6\}$ and $B=\{a, b, c, d\}$ two sets. Let f be a function defined as follows:
$f: A \rightarrow B$

$$
\begin{array}{r|cccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline f(x) & a & b & a & c & d & d
\end{array}
$$

i. Draw the arrow diagram to represent the function f .
ii. List the co-domain and the range of f.
iii. Find the ancestor (pre-image) of d.
iv. Show that f is not a one to one function.
v. Show that f is an onto function.
(b) Consider the function $f(x)=2 \sin 2 x$.
i. What is the period of the function f ?
ii. Find the amplitude of the function f ?
iii. Fill in the missing values in the following table

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$2 \sin 2 x$					

iv. Plot the graph of f for x in $[-\pi, \pi]$.
(c) Let $f(x)=x^{3}-3 x+2$
i. Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
ii. Work out the first and second derivatives of the function $f\left(f^{\prime}\right.$ and $\left.f^{\prime \prime}\right)$.
iii. Find all stationary points of the function f and their nature i.e. maxima, minima or inflection point.
iv. Plot the curve of the function f .

Question 4 Matrices \& Transformations

(a) Given the vectors $\overrightarrow{v_{1}}=\binom{1}{1}=\vec{i}+\vec{j}$ and $\overrightarrow{v_{2}}=\binom{-1}{\sqrt{3}}=-\vec{i}+\sqrt{3} \vec{j}$
i. Find the magnitudes of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.
ii. Find the unit vector of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.
iii. Work out the dot product of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}\left(\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}\right)$.
iv. Hence, find the angle between $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.
(b) Consider the following matrices:

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right) \quad B=\left(\begin{array}{cc}
-3 & -2 \\
-1 & -1
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & -1 & 3 \\
2 & -2 & 0
\end{array}\right)
$$

i. Write down the 2 by 2 and the 3 by 3 identity matrices, $I_{2 \times 2}$ and $I_{3 \times 3}$.
ii. Compute AB and hence write B in terms of A .
iii. Explain why CA is not defined.
iv. Work out the inverse matrix, M^{-1}, of the folowing matrix:

$$
M=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right)
$$

(c) Let A be a 3 x 3 homogeneous matrix transformation corresponding to an anti-clockwise rotation about the z -axis by an angle $\frac{\pi}{2}$ and let B be a 3 x 3 homogeneous matrix transformation to translate the x and y coordinates by a 3 and 2 respectively.
i. Write down A, B
ii. Find the single homogeneous matrix, C, which represents transformation represented by the matrix A followed by transformation represented by the matrix B.
iii. How would the combined transformation represented by the matrix C transform
the following three points which represent a triangle in the Cartesian space: $(0,0)$, $(1,1)$ and $(1,2)$?
iv. Find the matrix A^{-1}

