UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2016

IS51016A Audio-Visual Computing

Duration: 2 hours 15 minutes

Date and time:

This paper is in two parts: part A and part B. You should answer ALL questions from part A and TWO questions from part B. Part A carries 40 marks, and each question from part B carries 30 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS51016A 2016

page 1 of 8

TURN OVER

Part A

Please answer all questions

IS51016A 2016

page 2 of 8

Question 1 If you want to move towards the direction (1,1) with the same speed as velocity (3,4), what is your velocity?

- (a) (1,1)
- (b) $(5*\operatorname{sqrt}(2), 5*\operatorname{sqrt}(2))$
- (c) (5,5)
- (d) None of the above

Question 2 PVector is the class in Processing which describes a two or three dimensional vector. It has several useful methods. Now given two vectors v1 and v2, what is are the return types of v1.dist(v2) and add(v1,v2)?

- (a) v1.dist(v2) returns a float, add(v1,v2) returns a float.
- (b) v1.dist(v2) returns a float, add(v1,v2) returns a vector.
- (c) v1.dist(v2) returns a vector, add(v1,v2) returns a float.
- (d) v1.dist(v2) returns a vector, add(v1,v2) returns a vector.

Question 3 What is the return type of the dot product of a(1,1) and b(4,-2)?

- (a) Vector
- (b) Matrix
- (c) Array
- (d) Float

Question 4 In the following equation, what is the frequency of the sine wave: a, b, c, or d: $f(t) = a \sin(bt + c) + d$

[4]

[4]

Question 5 Write down correct sequence of steps 2-5 for motion detection (the first step is given).(Note that here you are expected to write down 'a,b,c,d' with the correct order)

```
Step 1: Set a threshold for how different a pixel must be

Step 2:__

Step 3:__

IS51016A 2016 page 3 of 8 TURN OVER
```

[4]

[4]

[4]

Step 4:__ Step 5:__

- (a) Only if different, display black, if not display white
- (b) Compare current colour and previous colour
- (c) Create an empty image as a buffer
- (d) Step through all pixels to see if we've exceeded the threshold

Question 6 Indicate the most appropriate communication protocol MIDI, OSC, or neither for each of the following scenarios.

[4]

- (a) Sending frequency and articulation data from a piano keyboard to a commercial music application.
- (b) Sending control data between a sound application and a visualiser on the same computer.
- (c) Sending control data between a sound application and a visualiser over a network.
- (d) Sending realtime audio signal data over a network.

Question 7 What type of synthesis is performed by the following Processing/minim code?

```
Minim minim;
Oscil carrier;
Oscil modulator;
void setup()
{
    minim = new Minim(this);
    AudioOutput out = minim.getLineOut();
    modulator = new Oscil(65, 50, Waves.SINE );
    modulator.offset.setLastValue(300);
    carrier = new Oscil( 440, 0.2f, Waves.SINE );
    modulator.patch(carrier.frequency);
    carrier.patch(out);
}
```

[4]

- (a) Additive synthesis
- (b) Subtractive Synthesis
- (c) Frequency Modulation
- (d) Amplitude Modulation

IS51016A 2016 page 4 of 8

Question 8 Calculate the sizes in MB of a 10 minute uncompressed recording in these formats.

- (a) mono, 44.1k, 16 bit
- (b) stereo, 96000 Hz, 24 bit
- (c) mono, 22000 Hz, 8 bit
- (d) mono, 11k, 8 bit

Question 9 In Digital Signal Processing a smaller buffer size results in

[4]

[4]

[4]

- (a) A higher demand on the CPU and increased latency.
- (b) A lower demand on the CPU and decreased latency.
- (c) A lower demand on the CPU and increased latency.
- (d) A higher demand on the CPU and decreased latency.

Question 10 What perceptual property of a sound corresponds to the frequency of a sound wave?

- (a) Loudness
- (b) Pitch
- (c) Amplitude
- (d) Timbre

IS51016A 2016

page 5 of 8

TURN OVER

Part B

IS51016A 2016

page 6 of 8

Question 11 Physical Simulation

IS51	1016A 2016 page 7 o	f 8 TURN OVER		
(a)) Describe the perceptual and procedura Brown Noise?	l differences between White Noise and	[3]	
Question 13 Audio: Synthesis				
(f)) Describe how you might configure and responsive visualisation in Processing. drawings, and can specify the type of au	use an FFT object to control an audio You can optionally use pseudo code and dio input.	[9]	
(e)) An envelope object produces a linear set 0.0. Describe how you might convert the a perceptually even fade out.	quence of values which move from 1.0 to values so that they can be used to create	[2]	
(d)) What filter and parameter values would drum sample which starts with the full fr lower frequencies. For extra marks specie	l you use for a filter sweep on a looping equency spectrum and gradually removes fy what type of envelop you might use.	[4]	
(c)) Is the kernel you wrote down in the pr filter? Why?	revious question a high-pass or low-pass	[2]	
(b)) In image processing, we often use kernels a 3 by 3 kernel, and explain what does is preserves the brightness of the original in	s for filtering. Write down an example of t do. Briefly explain whether your kernel mage and why.	[5]	
(a)) Filtering is an important method in in between local and neighbourhood filterin	nage processing. Explain the difference ag, and give two examples each.	[8]	
Question 12 Filtering (joint question: visual and audio)				
(e)) We discussed five steps that happen for down and explain briefly the five steps with	each frame in a particle system. Write ith one of the examples you wrote above. [10]	
(d)) Why do we need particle systems somet of particle systems.	imes? Give two examples of applications	[6]	
(c)) Briefly explain how you would animate t from the sky to the ground, under the in	he position of an object that is dropping fluence of gravity.	[6]	
(b)) Based on Newton's second law, how doe (consider the situation where gravity is a for instance, an object dropping from the resistance)?	s the force of gravity influence an object the only force that applies to this object, he sky to the ground when we ignore air	[4]	
(a)) The basis of physical simulation is Newt formula of Newton's Second Law and ex	on's second law. Write the mathematical plain its meaning.	[4]	

(b)	Describe the perceptual and procedural differences between an audible sine wave and an audible saw wave. You may use drawings if you want ?	[3]
(c)	Draw an envelope for a bell-like sound. Give an indication of the timing of the various portions.	[2]
(d)	Draw and label an ADSR envelope giving values for each of the parameters and indicating for each of them whether they describe time or level.	[2]
(e)	Describe a number of synthesised instruments (eg. bass, drums, lead synth) that could be used for creating a retro 80s electropop band. You should describe your instruments in terms of details such as synthesis techniques, types of wave form, envelopes, and parametrical ranges.	[10]
(f)	Now you want to add vocals with a classic delay effect. Write pseudo code to implement a delay line with feedback at buffer level.	[10]