UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2014

IS53032A Advanced Graphics and Animation

Duration: 2 hours 15 minutes

Date and time: Wed 14th January 2015 at 2.30pm

There are five questions in this paper. You should answer no more than three questions. Full marks will be awarded for complete answers to a total of three questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Question 1 Transformations, projection and rasterisation

- (a) What is meant by:
 - i. world coordinate system
 - ii. object coordinate system

[2]

[2]

(b) Explain the context of the following Unity script and what it does. [4]

```
for (var child : Transform in transform) {
    child.position += Vector3.up * 10.0;
}
```

- (c) The endpoints of a given line are (0,0) and (6,18). Compute the equation of the line and each value of y as x steps from 0 to 6. [5]
- (d) The matrix $\begin{pmatrix} 1 & a \\ b & 1 \end{pmatrix}$ defines a transform called a *shearing*. The special case when b = 0 is called *shearing in the x direction*. When a = 0, we have *shearing in the y direction*. Sketch the effect of these shearing transformations on the square A(0,0), B(1,0), C(1,1), and D(0,1) when a = 2 and b = 3. [12]

Question 2 Surfaces and shading

(a)	The painter's algorithm is a form of hidden surface removal.	
	i. What is the underlying concept of the painter's algorithm?	[3]
	ii. What difficulties might be encountered in implementing the painter's algorithm?	[2]
(b)	With polygon filling, all of the pixels within the boundaries of the polygon must be set to the specified colour or pattern.	
	i. Explain the differences between recursive seed fill and scanline fill,	[4]
	ii. Sketch diagrams to show how these two algorithms work.	[4]
(c)	Explain the following shader code:	[12]
	<pre>slayout (std140) uniform Matrices { mat4 projModelViewMatrix; mat3 normalMatrix:</pre>	
	};	
	in vec3 position;	
	in vec3 normal;	
	In vec2 texcoold,	
	out VertexData {	
	vec2 texCoord; vec3 normal:	
	<pre>} VertexOut;</pre>	
	<pre>void main() {</pre>	
	<pre>VertexOut.texCoord = texCoord;</pre>	
	<pre>VertexOut.normal = normalize(normalMatrix * normal); </pre>	
	<pre>gi_rosition = projmodelviewmatrix * vec4(position, 1.0); }</pre>	

Question 3 Textures

(a)	A shader is a computer program that is used to do shading, usually used to program the GPU rendering pipeline.		
	i. What is the difference between a vertex and a fragment shader?ii. What kind of things can fragment shaders do?iii. What types of input do fragment shaders take?	[3] [3] [3]	
(b)	What is the difference between texture mapping and procedural texturing?	[4]	
(c)	Explain the steps required to carry out texture mapping of an image onto a polygon using a planar map shape.	[8]	
(d)	How might you ensure that an object's texture remains in the correct place when that object moves?	[4]	

Question 4	Representing the real world	
(a) What is a B	RDF?	[3]
(b) What is the	rendering equation? Why is it useful?	[5]
(c) Although th aspect of lig	e rendering equation is very general, it does not capture every physical transport. Describe three aspects that it cannot capture.	[9]
(d) i. Explain ii. Describe	the concept of ray-tracing. THREE advantages of using ray-tracing to render a scene.	[5] [3]

Question 5 Post-processing and display

The ultimate aim of realistic graphics is the creation of images that provoke the same responses that a viewer would have to a real scene.

(a)	In relation to this, what problems do computer screens pose?	[5]
(b)	How does tone mapping offer a solution to this problem?	[5]
(c)	Why does a linear scaling not work?	[5]
(d)	By what process can a non-HDR camera produce an HDR image?	[5]

(e) Why is a specific file format needed for HDR images? [5]

END OF EXAM