
 1

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2015

DEPARTMENT OF COMPUTING

IS53011A Language Design and Implementation

Duration: 2 hours 15 minutes

Date and time: Monday 12 January, 2.30pm

There are five questions on this paper. You should answer no more that THREE
questions. Full marks will be awarded for complete answers to a total of THREE
questions. Each question carries 25 marks. The marks for each part of a question are
indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION

ROOM

IS53011A 2015 TURN OVER

 2

Question 1.

a) Define the notion of a regular expression over a given alphabet. [5]

b) Explain briefly which kind of programming language constructs can not be
 described by regular expressions, and reason whether these constructs can be
 specified using context-free grammars. [4]

c) Rewrite the following regular expression in a more compact format: (b* c*)*. [5]

d) Demonstrate elimination of immediate left recursion from the following
 context-free grammar: [6]

 (1) S → SE
 (2) S → SSa
 (3) S → ES
 (4) S → b

e) Give the algorithm for construction of predictive parsing tables. [5]

IS53011A 2015 TURN OVER

 3

Question 2.

a) Consider the following grammar: c* (bcc*)* (b | ∈). For each of the following
strings, say whether it could be generated by the grammar:

i) ∈
ii) ccbccbbc
iii) bccbccc

[3]

b) Develop a nondeterministic finite state automaton (NFA) for the simple language
 defined by the regular expression: ca(a|c)b using the Thompson’s construction
 algorithm. [6]

c) Convert the NFA from part (b) above to a deterministic finite-state
 automaton (DFA) using the subset construction algorithm. [12]

d) Create the transition graph of the constructed DFA from part (c). [4]

 4

IS53011A 2015 TURN OVER

 5

Question 3.

a) What are the three main advantages of the LR parsing technique? [5]

b) Let the following LR grammar suitable for top-down parsing be given:

(1) E → T
(2) T → bTc
(3) T → bc

 i) Derive the canonical collection of items for this grammar using the
 sets-of-items construction algorithm. [6]

 ii) Construct the DFA whose states are these sets of valid items. [4]

 iii) Interpret the operation of the LR parsing algorithm on the input: bbbccc $,
 and show the contents of the stack, the input and the output. [10]

 Action Goto
State b c $ T

0 s1 3
1 s1 s4 2
2 s5
3 accept
4 r3 r3 r3
5 r2 r2 r2

IS53011A 2015 TURN OVER

 6

Question 4.

a) Describe briefly the main four components of a context-free grammar. [4]

b) Give a definition of grammar derivations in context of programming
 language compilers. [3]

c) Consider the following LL(1) grammar for top-down parsing:

E → T F
T → double D | (E)
F → + E | ∈
D → * T | ∈

 i) Derive the functions FIRST and FOLLOW necessary for building the
 corresponding parsing table for a top-down nonrecursive predictive
 parsing algorithm. [8]

 ii) Assume that the following parsing table for the LL(1) grammar
 from part (c) is given:

 double + * () $
E E → TF E → TF
T T → double D T → (E)
F F → +E F → ∈ F → ∈
D D → ∈ D → *T D → ∈ D → ∈

 Using this parsing table show the stack, the input and the output of the
 nonrecursive predictive parsing algorithm on the input string:
 double * double . [10]

IS53011A 2015 TURN OVER

 7

Question 5.

a) i) What are the two most important properties that an optimising compiler
 should provide? [4]

 ii) Explain briefly where the name “three-address code” in the field of
 computer programming language design comes from? [3]

b) Consider the following simple function which iteratively performs summation
 of multiplied consecutive integers from a given array:

 int Summation(int a[], int N)
 {
 int j, sum;
 j = 1; sum = 0;
 while (j < N)
 {
 sum = sum + a[j-1] * a[j];
 j = j + 1;
 }
 return sum;
 }

 i) Develop three-address intermediate code from this simple function. [13]

 ii) Optimise the developed three-address code using the techniques code
 motion and reduction in strength. [5]

IS53011A 2015 END OF EXAMINATION

