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Question 1

(a) The first 16 integers ≥ 0 can be represented by 4-bit binary strings.

i. List these integers in hexadecimal, together with their binary equivalents.

ii. Find the hexadecimal equivalent of the binary numeral 100101.01 and find the
binary equivalent of the hexadecimal numeral 59.A

[5]

(b) Working in the binary system compute the following operation, showing all your
working:

(10110)2 + (11011)2 − (111)2

[4]

(c) i. Define what is meant by an irrational number.

ii. Showing all your working, express the repeating decimal 0.270270.....
as a fraction in its simplest terms.

[4]

(d) Let A = {2n : n ∈ Z+} and B = {3, 6, 9, 12, ...} be two sets of numbers.

i. Describe the set A by the listing method.

ii. Describe the set B by the rules of inclusion method.

iii. Find the two sets A ∩B and A−B, by the listing method. [6]

(e) Let P, Q and R be subsets of a universal set U .

i. Construct a membership table for the set X = P ′ ∪ (Q ∩R).

ii. Draw a labelled Venn diagram showing P,Q, and R intersecting in the most
general way.

iii. Shade the region X on your diagram.

iv. Is the set P ′ ∩R ⊆ X? Justify your answer. [6]
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Question 2

(a) Let n be an element of the set {1,2,3,4,5,6,7,8,9} and p and q be the following
statements about n:

p: n ≤ 5

q: n is even.

i. Express each of the three following compound propositions symbolically by
using p, q and appropriate logical symbols.

n>5 and n is odd.
if n≤5 then n is odd.
n>5 or n is even, but not both.

[3]

ii. Draw up the truth tables for the following statements and find the values of n
for which they are true:

p ∨ ¬q; ¬p ∧ q

[4]

iii. Use the truth table to find a statement that is logically equivalent to ¬p→ q.
[3]

(b) Let p and q be the two propositions defined in (a).

i. Write the contrapositive of the statement:

if n is even then n ≤ 5.

[3]

ii. Write the result in (i) into it’s equivalent logical expression.
[2]

(c) i. Construct and draw a logic network that accepts as inputs p and q, which may
independently have the value 0 or 1, and gives as final output
(p∧ q)∨¬q. Label all the gates appropriately and also give labels to show the
output from each gate. [4]

ii. Construct a logic table to show the value of the output corresponding to each
combination of values (0 or 1) for the inputs p and q. [3]

iii. Show that (p ∧ q) ∨ ¬q is equivalent to q → p. [3]
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Question 3

(a) A function f : X → Y , where X = {p, q, r, s} and Y = {1, 2, 3, 4, 5}, is given by
the subset of X × Y , {(q, 3), (r, 3), (p, 5), (s, 2)}.

i. Show f as an arrow diagram.

ii. State the domain, co-domain and range of f.

iii. Say why f does not have the one-to-one property and why f does not have
the onto property, giving a specific counter example in each case.

[10]

(b) Let f : R→ [−3,∞[ with f(x) = x2 − 3

i. Plot the function f for x in [-3,3].

[2]

ii. Show that f is not invertible.

[3]

(c) i. State the condition to be satisfied in order for a function to have an inverse.

ii. Given the function f : R→ R where f(x) = 2x− 1.

1. Show that f is a one to one function.

2. Show that f is an onto function.

3. Find the inverse inverse function f−1.

[5]

iii. Let g be a function defined as follows:

g : Z→ R where g(x) = 2x− 1.

1. Is g a one to one function? Explain your answer.

2. Is g an onto function? Explain your answer.

3. Is g invertible? Explain your answer.

[5]
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Question 4

(a) i. Draw a binary tree to store a list of 14 records.
[6]

ii. What is the maximum number of comparisons that would have to be made in
order to locate an existing record from this list of 14 records?

[2]

iii. Find the height of binary search tree to store a list of 4000. records numered
1,2,...4000 at its internal nodes.

[2]

(b) i. Use the formula
n∑
k=1

k = n(n+1)
2 to find a formula for sn =

n∑
k=1

(3k + 1) in terms

of n. Use this formula to find this sum when n = 10.
[3]

ii. Write the following expression in
∑

notation appropriate limits and calculate
its value.

50 + 51 + 52 + ...+ 100

[2]

(c) i. Given the following sequence

1, 4, 7.10, 13, 16, 19, · · ·

1. Is this sequence arithmetic of geometric sequence? If you identify it as arith-
metic, specify the common difference d. If you identify it as geometric, specify
the common ratio r.

2. In terms of n find an expression for the sum of the first n terms of this se-
quence.

3. Find the sum of the first 10 terms.
[5]

ii. Let un be the sequence of numbers defined by

u1 = 0; and
un+1 = un + n

1. Calculate u2 and u3.
2. Prove by induction that

un =
n(n− 1)

2
for all n ≥ 1

[5]
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Question 5

(a) Let G be the simple graph with vertex set V (G) = {a, b, c, d, e} and adjacency
matrix

A =

a b c d e
a
b
c
d
e


0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0



i. Say how the number of edges in G is related to the entries in the adjacency
matrix A and calculate this number.

ii. Draw G.

iii. Find a spanning tree T1 for G and give its degree sequence.

iv. Find a spanning tree T2 for G which is not isomorphic to T1 and give a reason
why it is not isomorphic.

[10]

(b) i. Given the vectors ~v1 =

[
1√
3

]
and ~v2 =

[
1
1

]
1. Find the magnitude of ~v1 and ~v2

2. Compute the dot production of ~v1 and ~v2

3. Find the angle between ~v1 and ~v2 .

[3]

ii. Which of the following homogeneous coordinates (2,6,3), (4,6,2), (2,4,1) and
(8,12,4) represent the point (2, 3)?

[2]
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(c) Let A be a 3x3 homogeneous matrix transformation corresponding to an anti-
clockwise rotation about the z-axis by an angle π

2 and let B be a 3x3 homoge-
neous matrix tranformation to scale the x and y coordinates by a factor 3 and 2
respectively

i. Write down A, B

ii. Find the single homogeneous matrix, C, which represents transformation rep-
resented by the matrix A followed by transformation represented by the matrix
B.

iii. How would the combined transformation represented by the matrix C trans-
form the following three points which represent a triangle in the Cartesian
space: (0,0), (-1,1) and (1,1)?

iv. Find the matrix A−1 [10]
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Question 6

(a) i. What properties should a graph have in order for it to be:

1. a simple graph;
2. a complete grqph

[2]

ii. Say why is it imposible to construct a simple graph with the following degree
sequence:

5, 4, 3, 3, 2

iii. Is it possible to construct a 3-regular graph with 5 vertices? Explain your
answer.

[3]

(b) Given the graph G with vertices v1, v2, ... v7 and adjacency list

v1 : v2, v4

v2 : v1, v3

v3 : v2, v4

v4 : v1,v3,v5

v5 : v4, v6

v6 : v5, v7

v7 : v5, v6.

i. Draw the graph of G.
[2]

ii. What is the degree sequence of G? Find the number of edges in G.
[2]

iii. Say how many edges there are in a tree with n vertices. Hence explain how
many edges must be removed from G to create a spanning tree.

[3]

iv. Draw all non isomorphic trees of G.
[3]

(c) Given S be the set of integers {1, 2, 5, 6, 7, 8, 9}.

i. Let R1 be a relation defined on S by the following condition such that,
for all x, y ∈ S, xR1y if x ≤ y .

1. Draw the digraph of R1.
2. Show that R1 is a total order.

[5]
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ii. Another relation, R2, is defined on S as follows:

for allx, y ∈ S, xR2Y if (x+ y) mod 2 = 0

1. Draw the digraph of this relation on S.
2. Explain why this relation is an equivalence relation but not a partial order.
3. Write down the equivalence classes for this relation. [5]
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