UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2015

IS51002C-Resit Mathematical Modelling for Problem Solving

Duration: 2 hours 15 minutes

Date and time:

There are Six questions in this paper. You should answer no more than THREE questions. Full marks will be awarded for complete answers to a total of THREE questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

page 1 of 9

(a)	The first 1	16 integers > 0	can be re	presented by	4-bit binarv	[,] strinas.
· · · · /						

- i. List these integers in hexadecimal, together with their binary equivalents.
- ii. Find the hexadecimal equivalent of the binary numeral 100101.01 and find the binary equivalent of the hexadecimal numeral 59.A

[5]

(b) Working in the binary system compute the following operation, showing all your working:

$$(10110)_2 + (11011)_2 - (111)_2$$

[4]

[4]

[6]

- (c) i. Define what is meant by an irrational number.
 ii. Showing all your working, express the repeating decimal 0.270270..... as a fraction in its simplest terms.
- (d) Let $A = \{2n : n \in \mathbb{Z}^+\}$ and $B = \{3, 6, 9, 12, ...\}$ be two sets of numbers.
 - i. Describe the set *A* by the listing method.
 - ii. Describe the set B by the rules of inclusion method.
 - iii. Find the two sets $A \cap B$ and A B, by the listing method. [6]
- (e) Let P, Q and R be subsets of a universal set U.
 - i. Construct a membership table for the set $X = P' \cup (Q \cap R)$.
 - ii. Draw a labelled Venn diagram showing P, Q, and R intersecting in the most general way.
 - iii. Shade the region X on your diagram.
 - iv. Is the set $P' \cap R \subseteq X$? Justify your answer.

page 2 of 9

(a) Let *n* be an element of the set $\{1,2,3,4,5,6,7,8,9\}$ and *p* and *q* be the following statements about n:

$$p: n \le 5$$
$$q: n \text{ is even.}$$

i. Express each of the three following compound propositions symbolically by using p, q and appropriate logical symbols.

n>5 and n is odd. if $n\leq 5$ then n is odd. n>5 or n is even, but not both.

[3]

ii. Draw up the truth tables for the following statements and find the values of n for which they are true:

$$p \lor \neg q; \qquad \neg p \land q$$

iii. Use the truth table to find a statement that is logically equivalent to $\neg p \rightarrow q$.

[3]

[4]

- (b) Let p and q be the two propositions defined in (a).
 - i. Write the contrapositive of the statement:

if *n* is even then
$$n \leq 5$$
.

[3]

ii. Write the result in (i) into it's equivalent logical expression.

[2]

(c) i. Construct and draw a logic network that accepts as inputs *p* and *q*, which may independently have the value 0 or 1, and gives as final output (*p* ∧ *q*) ∨ ¬*q*. Label all the gates appropriately and also give labels to show the output from each gate. [4]
ii. Construct a logic table to show the value of the output corresponding to each combination of values (0 or 1) for the inputs *p* and *q*. [3]
iii. Show that (*p* ∧ *q*) ∨ ¬*q* is equivalent to *q* → *p*. [3]

IS51002C-Resit 2015	page 3 of 9	TURN OVER
---------------------	-------------	-----------

- (a) A function $f : X \to Y$, where $X = \{p, q, r, s\}$ and $Y = \{1, 2, 3, 4, 5\}$, is given by the subset of $X \times Y$, $\{(q, 3), (r, 3), (p, 5), (s, 2)\}$.
 - i. Show f as an arrow diagram.
 - ii. State the domain, co-domain and range of f.
 - iii. Say why f does not have the one-to-one property and why f does not have the onto property, giving a specific counter example in each case.

[10]

- (b) Let $f : \mathbb{R} \to [-3, \infty]$ with $f(x) = x^2 3$
 - i. Plot the function f for x in [-3,3].
 - ii. Show that f is not invertible.
- (c) i. State the condition to be satisfied in order for a function to have an inverse.
 - ii. Given the function $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x 1.
 - 1. Show that f is a one to one function.
 - 2. Show that f is an onto function.
 - 3. Find the inverse inverse function f^{-1} .
 - iii. Let g be a function defined as follows:

 $g: \mathbb{Z} \to \mathbb{R}$ where g(x) = 2x - 1.

- 1. Is g a one to one function? Explain your answer.
- 2. Is g an onto function? Explain your answer.
- 3. Is *g* invertible? Explain your answer.

[5]

[5]

IS51002C-Resit 2015 page 4 of 9

[2]

[3]

- (a) i. Draw a binary tree to store a list of 14 records.
 - ii. What is the maximum number of comparisons that would have to be made in order to locate an existing record from this list of 14 records?

[2]

[6]

iii. Find the height of binary search tree to store a list of 4000. records numered 1,2,...4000 at its internal nodes.

[2]

[3]

- (b) i. Use the formula $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ to find a formula for $s_n = \sum_{k=1}^{n} (3k+1)$ in terms of n. Use this formula to find this sum when n = 10.
 - ii. Write the following expression in \sum notation appropriate limits and calculate its value.

$$50 + 51 + 52 + \dots + 100$$

(c) i. Given the following sequence

$$1, 4, 7.10, 13, 16, 19, \cdots$$

- 1. Is this sequence arithmetic of geometric sequence? If you identify it as arithmetic, specify the common difference d. If you identify it as geometric, specify the common ratio r.
- 2. In terms of n find an expression for the sum of the first n terms of this sequence.
- 3. Find the sum of the first 10 terms.
- ii. Let u_n be the sequence of numbers defined by

$$u_1 = 0; \text{ and} u_{n+1} = u_n + n$$

- 1. Calculate u_2 and u_3 .
- 2. Prove by induction that

$$u_n = \frac{n(n-1)}{2}$$
 for all $n \ge 1$

IS51002C-Resit 2015 page 5 of 9 **TURN OVER**

[2]

[5]

[5]

(a) Let G be the simple graph with vertex set $V(G)=\{a,b,c,d,e\}$ and adjacency matrix

		а	b	С	d	е
	a /	0	1	0	0	0
۸	b	1	0	1	0	1
$\mathbf{A} =$	c	0	1	0	1	0
	d	0	0	1	0	1
	e∖	0	1	0	1	0/

- i. Say how the number of edges in G is related to the entries in the adjacency matrix A and calculate this number.
- ii. Draw G.
- iii. Find a spanning tree T_1 for G and give its degree sequence.
- iv. Find a spanning tree T_2 for G which is **not** isomorphic to T_1 and give a reason why it is not isomorphic.

[10]

- (b) i. Given the vectors $\vec{v_1} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - 1. Find the magnitude of $\vec{v_1}$ and $\vec{v_2}$
 - 2. Compute the dot production of $\vec{v_1}$ and $\vec{v_2}$
 - 3. Find the angle between $\vec{v_1}$ and $\vec{v_2}$.

[3]

ii. Which of the following homogeneous coordinates (2,6,3), (4,6,2), (2,4,1) and (8,12,4) represent the point (2, 3)?

[2]

IS51002C-Resit 2015 page 6 of 9

- (c) Let A be a 3x3 homogeneous matrix transformation corresponding to an anticlockwise rotation about the z-axis by an angle $\frac{\pi}{2}$ and let B be a 3x3 homogeneous matrix tranformation to scale the x and y coordinates by a factor 3 and 2 respectively
 - i. Write down A, B
 - ii. Find the single homogeneous matrix, C, which represents transformation represented by the matrix A followed by transformation represented by the matrix B.
 - iii. How would the combined transformation represented by the matrix C transform the following three points which represent a triangle in the Cartesian space: (0,0), (-1,1) and (1,1)?
 - iv. Find the matrix A^{-1}

[10]

- (a) i. What properties should a graph have in order for it to be:
 - 1. a simple graph;
 - 2. a complete grqph
 - ii. Say why is it imposible to construct a simple graph with the following degree sequence:

5, 4, 3, 3, 2

iii. Is it possible to construct a 3-regular graph with 5 vertices? Explain your answer.

[3]

[2]

(b) Given the graph G with vertices $v_1, v_2, \dots v_7$ and adjacency list

	$v_1:v_2,v_4$	
	$v_2: v_1, v_3$	
	$v_3:v_2,v_4$	
	$v_4: v_{1,}v_{3,}v_5$	
	$v_5:v_4,v_6$	
	$v_6:v_5,v_7$	
	$v_7: v_5, v_6.$	
	i. Draw the graph of G .	
		[2]
	ii. What is the degree sequence of G ? Find the number of edges in G .	
		[2]
	iii. Say how many edges there are in a tree with n vertices. Hence explain how	
	many edges must be removed norm G to create a spanning tree.	[3]
	iv. Draw all non isomorphic trees of G .	[0]
		[3]
(\mathbf{a})	Civen (be the set of integers $(1, 0, 5, 6, 7, 8, 0)$	
(C)	Given S be the set of integers $\{1, 2, 5, 6, 7, 8, 9\}$.	
	i. Let \mathcal{R}_1 be a relation defined on S by the following condition such that, for all $x, y \in S$, $x\mathcal{R}_1y$ if $x \leq y$.	
	1. Draw the digraph of \mathcal{R}_1 .	
	2. Show that \mathcal{R}_1 is a total order.	
		[5]

IS51002C-Resit 2015 page 8 of 9

ii. Another relation, \mathcal{R}_2 , is defined on S as follows:

for all
$$x, y \in S$$
, $x\mathcal{R}_2Y$ if $(x+y) \mod 2 = 0$

- 1. Draw the digraph of this relation on *S*.
- 2. Explain why this relation is an equivalence relation but not a partial order.
- 3. Write down the equivalence classes for this relation.

IS51002C-Resit 2015

END OF EXAMINATION

[5]