Question 1 This question is about fractions, decimals percentages, standard form and significant figures

a)	Calculate the following,	give your	answers	as fraction	ons in	their
	simplest form					

i.
$$\frac{2}{9} + \frac{1}{3}$$

ii.
$$\frac{2}{9} \times \frac{3}{4}$$

[2]

b) Convert

i. $\frac{3}{8}$ to a percentage

ii. 24% to a fraction in simplest form

[2]

c) Freya, Fatima and Fern invest in the ratio 3:5:7. Freya's share is £60,000.

i. What is Fern's share?

ii. What is the total investment made?

[2]

d) Round the following numbers

i. 3.635321 to 2 decimal places

ii. 5.40321 to 3 significant figures

[2]

e) Write

i. 0.00342 in standard form

ii. 3.45×10^4 in full

Question 2 This question is about algebraic expressions and substitution

- a) Expand the following expressions.
 - i. (p q)(p + q)
 - ii. $(p+q)^2$

iii.
$$(p-q)(p+q)^2$$

[4]

- b) Evaluate the following expressions when p=2 and q=-1
 - i. (p q)(p + q)
 - ii. $(p-q)(p+q)^2$

[2]

- c) Simplify the following expressions, give answers as a single fraction in its simplest form
 - i. $\frac{2x}{9} \frac{1}{3}$

ii.
$$\frac{2x}{9} \div \frac{1}{3}$$

[2]

- d) Simplify the following expressions.
 - i. $(ab^5) \times (a^{-2}bc)$

ii.
$$(a^{-2}b)^2$$

Question 3 This question is about indices and number bases

a) Evaluate

i.
$$4^1 \times 4^3$$

ii.
$$(4^1)^3$$

iii.
$$4^1 \div 4^3$$

iv.
$$4^{\frac{3}{2}}$$

[4]

b) Convert the following numbers to decimal

[2]

c) Convert 1011₁₆ to:

[2]

d) Calculate the following. Give your answers in binary

i.
$$1110_2 + 1011_2$$

ii.
$$1110_2 - 1011_2$$

Question 4 This question is about logic and sets.

a)

i. Construct and complete a truth table for the following logical expressions.

$$(\neg P \to P) \land Q$$
 [3]

ii. Hence, or otherwise, find a simpler expression that is logically equivalent to $(\neg P \rightarrow P) \land Q$

[1]

iii. State whether $(\neg P \rightarrow P) \land Q$ is a tautology, a contradiction or a contingency

[1]

b) A, B, and C are subsets of a universal set \mathcal{E} as follows:

$$\mathcal{E} = \{x: x \text{ is an integer and } 10 < x \le 25\}$$

$$A = \{x: x \text{ is a multiple of 3}\}$$

$$B = \{15,16,17,18,19,20\}$$

$$C = \{x: x \text{ is an odd number}\}$$

List the following sets:

i.
$$A \cap B$$

ii.
$$B \cup \overline{C}$$

iii.
$$(A \cap B) \cup \overline{C}$$

[3]

- c) Draw and shade a Venn diagrams to represent the following general sets
 - i. $X \cup Y$

ii.
$$X \cup \overline{Y}$$

Question 5 This question is about linear, simultaneous and quadratic equations

a) Solve the following equations.

i.
$$21 = 3 + 2x$$

ii. $21 = 3(2 + x)$
iii. $3 + 2x = 3(2 + x)$

[3]

b) Solve the following simultaneous equations.

i.
$$\begin{cases} 3a - 2b = -3 \\ 3a + 2b = 9 \end{cases}$$

ii.
$$\begin{cases} 3c + 4d = 19 \\ 4c + 3d = 16 \end{cases}$$

[4]

c) Solve the following quadratic equations, you may use any method

i.
$$s^2 - 5s = 0$$

ii. $t^2 - 6t + 8 = 0$
iii. $2v^2 - 8v + 6 = 0$

[3]

Question 6 This question is about sequences and series.

- a) Given the sequence $a_i = \frac{1}{2^{i+1}}$ i = 1,2,3...
- i. State whether it is an arithmetic progression, a geometric progression or neither
- ii. Find a_1 , a_2 and a_{10}
- [3]
- iii. Find the sum of the first 10 terms of the sequence [2]
- b) Write out the following sum in full

$$\sum_{i=3}^{6} (2^i + 1) \tag{2}$$

c) Write the following using sigma notation $3 + 5 + 7 + \cdots + 17$

Question 7 This question is about functions and matrices

Consider the following functions:

$$f(x) = 3x - 2$$
 $g(x) = (x - 2)^2$ $h(x) = x^2 - 4$

a) Evaluate the following.

i.
$$f(2)$$

ii. $h(g(2))$
iii. $f(f(0))$ [3]

b) Write an expression for:

i.
$$f(2x)$$

ii. $f(h(x))$ [2]

c) Find $f^{-1}(9)$ [1]

d) Evaluate

$$\begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 [2]

e) Find the inverse M^{-1} of the following matrix M.

$$M = \begin{pmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}$$
 [2]

Question 8 This question is about trigonometry

- a) Triangle *RST* is a right angled triangle with angle $R = 90^{\circ}$ and side r = 6.8m and side s = 5.3m
 - i. Find the length of side *t*
 - ii. Find angle *S*

[3]

- b) In the triangle ABC angle $A = 100^{\circ}$ side b = 64mm and c = 22mm
 - i. Find the length of side *a*
 - ii. Find angle *B*

[3]

c)

- i. Draw the graph of y = sinx for $-360^{\circ} \le x \le +360^{\circ}$, show where it cuts the axes
- ii. Use your graph to find all the values of x between -360° and $+360^{\circ}$ for which sinx = 0.2

[4]

Question 9 This question is about graphs

a) Plot the graph of y = 3x - 1 for $-3 \le x \le 3$, show where it cuts the axes

[2]

b) On the same grid plot the graph of $y = x^2 - 2$ for $-3 \le x \le 3$

[2]

c) State the co-ordinates of the points of intersection of the two graphs.

[2]

d) Find the equation of the line that passes through (3,4) and (6,-2). State its gradient and intercept.

[2]

e) Sketch a graph of $y = 3^x + 1$ showing clearly where it cuts the axes and marking any asymptotes

$$y = 3^x + 1$$

Question 10 This question is about probability

- a) You have two spinners both numbered 1 to 4. You spin both spinners and multiply the numbers
 - i) Draw a space diagram (table of results) to show the possible outcomes.

[2]

- ii. Find the probability of getting an outcome of
 - i) 1
 - ii) 2
 - iii) less than 10

[3]

- b) A biased 6 sided dice is thrown. The probability of scoring 6 is 0.2. The scores 1 to 5 all have equal probability
 - i. What is the probability of scoring 1
 - ii. What is the probability of scoring less than 6

[2]

- c) You have letter cards that spell LONDON. You pick 2 cards without replacement. Find the probability of getting:
 - i. Both cards with the letter N
 - ii. Two cards with the same letter
 - iii. Two cards with different letters

[3]

END OF EXAMINATION