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Question 1.
a) Explain briefly what is the ambiguity problem in programming language grammars. [3]

b) i) Define the notion of parse tree in context of programming language design. [4]

ii) Let the following simple programming language grammar be given:
P—-> {D;;E}
D — var x
E—> x=E|(E)|E*F|F
F>1]2]3
Using this grammar develop a parse tree for the expression: { var X; x := ((1*2)*3). [8]

c) i) Explain what kind of strings are generated by the following regular expression:
1(0]1)*1] 1. [4]

ii) Two regular expressions are considered equivalent when they denote the same set of strings.
Give a different regular expression that is equivalent to (0 | 1 )*. [6]
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Question 2.

a) Design a nondeterministic finite state automaton (NFA) using the Thompson’s construction
algorithm for the following regular expression: @a* (b | ¢ ) b. [6]

b) Transform the designed NFA into a corresponding deterministic finite-state automaton (DFA)
using the subset construction algorithm. Show the computation of the functions
e-closure and move leading to the DFA. [11]

c) Build the transition table for the constructed DFA. [4]

d) Draw the transition graph for the constructed DFA. [4]
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Question 3.

a) Define formally the notion of context-free grammar using a tuple and explain
each component in it. [2]

b) Consider the following grammar for top-down nonrecursive predictive parsing:

S > {DE}

D — var

E—> x=FT
T-> *FT | e

F—> x|1

i) Compute the functions FIRST and FOLLOW necessary for parser construction. [10]

ii) Suppose that the ready parsing table for this grammar is:

var X 1 = * { } $
S S >{DE}
D | D—var
E E->x=FT
T T>*FT T-> €
F F—x Fo>1

Demonstrate the moves of the nonrecursive predictive parsing algorithm on the input string:
{var x :=x* 1 }. Show the stack, the input and the output of the nonrecursive parser. [13]
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Question 4.

a) Give the main four advantages of LR bottom-up parsers. [4]

b) Consider the following grammar suitable for bottom-up parsing:
1) S—>E
2 E>E+F
(3) E—>»a
4 F—>b
i) Develop the canonical collection of items for this grammar using the
sets-of-items construction algorithm. [6]

ii) Build the DFA whose states are these sets of valid items. [4]

ii) Demonstrate the operation of the bottom-up parsing algorithm on the input
string: a + b + b $ using the parsing table given below. Show the input, the
stack and the output in a table. [11]

Action Goto

State a b + $ E F

0 s2 1

1 s3 accept

2 r3 r3

3 sb 4

4 r2 r2

5 r4 r4
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Question 5.

a) i) What are the main two benefits of using machine-independent intermediate code
generation in programming language compilers? [3]

ii) Explain briefly where is the position of the intermediate code generation phase in
a programming language compiler? [3]

b) Consider the following function which scans through an array to locate the element with
the largest index and exchanges it with the N-th element:

int Exchange ()
{
int j, v, N, max;
max = 1; N = 5;
for (jJ = 2; j <= N; j++ )
if (al jJ 1 > al[ max ] )
]

v = a[ max

return v;

}
i) Generate three-address intermediate code for this function. [14]

ii) Optimise the generated three-address code using the technique reduction in strength. [5]
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