
 1

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2014

COMPUTING AND INFORMATION SYSTEMS

IS53011A Language Design and Implementation

Duration: 2 hours 15 minutes

Date and time:

There are five questions on this paper. You should answer no more that THREE

questions. Full marks will be awarded for complete answers to a total of THREE

questions. Each question carries 25 marks. The marks for each part of a question are

indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION

ROOM

IS53011A 2014 TURN OVER

 2

Question 1.

a) Explain briefly what is the ambiguity problem in programming language grammars. [3]

 b) i) Define the notion of parse tree in context of programming language design. [4]

 ii) Let the following simple programming language grammar be given:

P { D ; E }

D var x

E x := E | (E) | E * F | F

F 1 | 2 | 3

 Using this grammar develop a parse tree for the expression: { var x; x := ((1*2)*3). [8]

 c) i) Explain what kind of strings are generated by the following regular expression:

 1(0|1)*1| 1. [4]

 ii) Two regular expressions are considered equivalent when they denote the same set of strings.

 Give a different regular expression that is equivalent to (0 | 1)*. [6]

IS53011A 2014 TURN OVER

 3

Question 2.

a) Design a nondeterministic finite state automaton (NFA) using the Thompson’s construction

 algorithm for the following regular expression: a* (b | c) b. [6]

b) Transform the designed NFA into a corresponding deterministic finite-state automaton (DFA)

 using the subset construction algorithm. Show the computation of the functions

 -closure and move leading to the DFA. [11]

c) Build the transition table for the constructed DFA. [4]

d) Draw the transition graph for the constructed DFA. [4]

IS53011A 2014 TURN OVER

 4

Question 3.

a) Define formally the notion of context-free grammar using a tuple and explain

 each component in it. [2]

b) Consider the following grammar for top-down nonrecursive predictive parsing:

S { D E }

D var

E x := F T

T * F T |

F x | 1

 i) Compute the functions FIRST and FOLLOW necessary for parser construction. [10]

 ii) Suppose that the ready parsing table for this grammar is:

 var x 1 := * { } $

S S {D E }

D D var

E E x := F T

T T *F T T

F F x F 1

 Demonstrate the moves of the nonrecursive predictive parsing algorithm on the input string:

 { var x := x * 1 }. Show the stack, the input and the output of the nonrecursive parser. [13]

IS53011A 2014 TURN OVER

 5

Question 4.

a) Give the main four advantages of LR bottom-up parsers. [4]

b) Consider the following grammar suitable for bottom-up parsing:

 (1) S E

 (2) E E + F

 (3) E a

 (4) F b

 i) Develop the canonical collection of items for this grammar using the

 sets-of-items construction algorithm. [6]

 ii) Build the DFA whose states are these sets of valid items. [4]

 ii) Demonstrate the operation of the bottom-up parsing algorithm on the input

 string: a + b + b $ using the parsing table given below. Show the input, the

 stack and the output in a table. [11]

 Action Goto
State a b + $ E F

0 s2 1

1 s3 accept

2 r3 r3

3 s5 4

4 r2 r2

5 r4 r4

IS53011A 2014 TURN OVER

 6

Question 5.

a) i) What are the main two benefits of using machine-independent intermediate code

 generation in programming language compilers? [3]

 ii) Explain briefly where is the position of the intermediate code generation phase in

 a programming language compiler? [3]

b) Consider the following function which scans through an array to locate the element with

 the largest index and exchanges it with the N-th element:

 int Exchange()

 {

 int j, v, N, max;

 max = 1; N = 5;

 for (j = 2; j <= N; j++)

 if (a[j] > a[max])

 max = j;

 v = a[max]; a[max] = a[N];

 return v;

 }

 i) Generate three-address intermediate code for this function. [14]

 ii) Optimise the generated three-address code using the technique reduction in strength. [5]

IS53011A 2014 END OF EXAMINATION TURN OVER

