Question 1 This question is about fractions, ratios, rounding and standard form

a)	Calculate the following, give your answers as fractions in their
	simplest form

i.
$$\frac{2}{5} + \frac{1}{4}$$

ii.
$$\frac{2}{5} \times \frac{1}{4}$$

[2]

b) Convert the following to decimal fractions (decimals)

i.
$$\frac{4}{11}$$

[2]

c) A metal alloy is made from tin, copper and antimony in the ratio 94: 1: 5. Calculate the weight of each metal needed to make 1kg of the alloy.

[2]

d) Round the following numbers

[2]

e) Write the following numbers in standard form

Question 2 This question is about algebraic expressions and substitution

a) Expand the following expressions, give your answers in their simplest form

i.
$$(a+b)(a-b)$$

ii. $(a-b)^2$
iii. $(a-b)^3$

b) Evaluate the following expressions when a = 1 and b = 2

i.
$$(a+b)(a-b)$$

ii. $(a-b)^2$ [2]

c) Simplify the following expressions, give your answers in their simplest form

i.
$$\frac{2x}{5} \times \frac{1}{4x}$$
ii. $\frac{2x}{5} + \frac{1}{4x}$

d) Simplify the following expressions, give your answers in their simplest form

i.
$$(xy^2) \times (yx^3)$$

ii. $(xy^2)^0$ [2]

Question 3 This question is about indices and number bases

a) Evaluate

$$\begin{array}{ll} i. & 2^2 \times 2^3 \\ ii. & (2^2)^0 \\ iii. & 2^2 \div 2^3 \\ iv. & 2^2 \div 2^0 \\ \end{array}$$

[4]

b) Convert the following numbers to decimal (base 10)

 $\begin{array}{ll} \text{i.} & 1010111_2 \\ \text{ii.} & 247_{16} \end{array}$

[2]

c) Convert 77₁₀

i. to binary

ii. to hexadecimal

[2]

d) Convert 387₁₀ to base 5

Question 4 This question is about sets and logic

a)

i. Construct and complete a truth table for the following logical expression.

$$(P \land Q) \to (P \lor R)$$
[3]

ii. Hence decide whether the expression is a tautology, a contradiction or a contingency

[1]

b) Sets A and B are subsets of a universal set \mathcal{E} defined as follows:

$$\mathcal{E} = \{10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80\}$$

 $A = \{x: x \text{ is a multiple of } 10\}$
 $B = \{x: x \le 50\}$

- i. List the following sets:
 - 1. $A \cap B$
 - 2. $\overline{A} \cap B$
 - 3. $\bar{A} \cap \bar{B}$
 - 4. $\overline{A \cap B}$

[4]

ii. Draw a Venn diagram to show the sets A and B. Put all the elements of \mathcal{E} in your diagram.

Question 5 This question is about equations

a) Solve the following equations

i.
$$3x - 2 = 19$$

ii. $3(x - 2) = 18$
iii. $3x - 2 = 5x - 8$

[3]

b) Solve the following quadratic equations

i.
$$y^2 - 9 = 0$$

ii. $y^2 + 5y = 0$
iii. $y^2 - 5y - 6 = 0$ [3]

c) Solve the following simultaneous equations

i.
$$\begin{cases} 5a + 2b = 7 \\ 4a + 2b = 4 \end{cases}$$
ii.
$$\begin{cases} 3s + 2t = 7 \\ 4s - 5t = -6 \end{cases}$$
 [4]

Question 6 This question is about sequences and series

- a) Given the sequence 10, 13, 16...
 - i. Find the next two terms of the sequence
 - ii. Find an expression for the nth term of the sequence
 - iii. Find the sum of the first 20 terms of the sequence

[6]

- b) Given the sequence 1024, 512, 256 1, with first term 1024 and last term 1
 - i. Find the 5^{th} and 8^{th} terms in the sequence
 - ii. Find the total number of terms in the sequence

[4]

Question 7 This question is about functions and graphs

a) Consider the following functions

$$f(x) = x^2 \text{ and } g(x) = 3x - 2$$

i. Evaluate

1.
$$f(2)$$

2. $g(1)$ [2]

ii. Write an expression for g(f(x)) [1]

iii. Find an expression for
$$g^{-1}(x)$$
 [1]

iv. Draw the graph of g(x) = 3x - 2 for $-5 \le x \le +5$, show where it cuts the axes [2]

b) Sketch the following graphs showing where they cut the axes

i.
$$y = 2^{x}$$

ii. $y = 2^{x} + 1$
iii. $y = 2^{x+1}$
[4]

Question 8 This question is about trigonometry

a) A triangle *PQR* has

angle $Q = 90^{\circ}$ and sides PQ = 14cm and PR = 22cm

i. Find the length of QR

[2]

- ii. Find the value of *cosP*, give your answer as a fraction [1]
- iii. Find the size of angle *P*

[2]

b)

i. Draw the graph of y = cosx for $-180^{\circ} \le x \le +180^{\circ}$, show where it cuts the axes

[3]

ii. Use your graph to find all the values of x between -180° and $+180^{\circ}$ for which cos x = 0.5

Question 9 This question is about probability

- a) Two fair dice are rolled. The scores are then added. Find the probability of getting
 - i. a score of 12
 - ii. a score of 11 or 12
 - iii. a score that is less than or equal to 10

[3]

- b) Three fair dice are rolled. What is the probability of rolling
 - i. three sixes
 - ii. three of the same number

[2]

- c) Bag A contains three balls, two black and one white. Bag B contains 3 balls, 1 black and 2 white. One ball is picked from each bag.
 - i. Draw a tree diagram to represent this process, showing the probabilities at each stage

[3]

ii. Find the probability that both balls are black

[1]

iii. Find the probability that the balls are different colours

[1]

Question 10 This question is about matrices

a) Evaluate the following:

i.
$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix}$$

ii.
$$2\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix}$$

[4]

b) The following matrix *M* represents a transformation *T* of the *xy* plane.

$$M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

i. Apply the transformation T to the following 3 points (0,0) (2,0) and (2,1), which represent a triangle. Find the coordinates of the transformed triangle.

[3]

- ii. Give a geometrical description of the transformation T
- iii. Find the inverse of matrix *M*

[2]

END OF EXAMINATION

