
IS53011A 2013 TURN OVER 1

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2013

COMPUTING AND INFORMATION SYSTEMS

IS53011A Language Design and Implementation (Resit)

Duration: 2 hours 15 minutes

Date and time:

There are three questions in this paper. You should answer them all. Each question is

marked out of 100. The marks for each part of a question are indicated at the end of the

part in [.] brackets.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION

ROOM

IS53011A 2013 TURN OVER 2

Question 1.

a) Give the six main phases of a programming language compiler. [3]

b) Draw the algorithmic structure of the front end of a compiler. [5]

c) Define the notion of a regular expression over a given alphabet. [6]

d) Show six initial strings that can be generated by the following regular expression:

 (a) | ((b)* (c)). [6]

e) Rewrite the following regular expression in a more compact format: (a* b*)*. [5]

IS53011A 2013 TURN OVER 3

Question 2.

a) Design a nondeterministic finite state automaton (NFA) for the language:

 a (a | b)* using Thompson’s construction algorithm. [6]

b) Convert the NFA from part (a) above to a deterministic finite-state automaton (DFA)

 using the subset construction algorithm. [9]

c) Develop the transition graph and the transition table of the constructed deterministic

 finite-state automaton (DFA) from part (b). [10]

IS53011A 2013 TURN OVER 4

Question 3.

a) Explain the abbreviation LR (k) parsing used to denote a technique for bottom-up

 syntax analysis. [5]

b) Consider the following LR grammar and its parsing table:

(1) S' S

(2) S FF

(3, 4) F xF | y

 Action Goto

State x y $ S F

0 s3 s4 1 2

1 acc

2 s3 s4 5

3 s3 s4 6

4 r3 r3 r3

5 r2

6 r3 r3 r3

 Demonstrate the operation of the LR parsing algorithm on the input: x y x x y $,

 by demonstrating the contents of the stack, the input and the output. [20]

IS53011A 2013 TURN OVER 5

Question 4.

a) Given the following LL(1) grammar:

P { S }

S x := E

E FE'

E' - FE' | + FE' |

F x | y | c

Derive the functions FIRST and FOLLOW necessary for building the corresponding parsing

table for implementing a top-down nonrecursive predictive parsing algorithm. [5]

b) Why do we need these functions FIRST and FOLLOW in top-down parsing? [2]

c) Suppose that the parsing table for the LL(1) grammar from part (a) is:

 x y c + - := { } $

P P {S}

S S x:=E

E E FE' E FE' E FE'

E' E' +FE' E' -FE' E'

F F x F y F c

 Illustrate the stack, the input and the output of the nonrecursive predictive parsing algorithm

 on the following input: { x := y – c + x }. [18]

IS53011A 2013 TURN OVER 6

Question 5.

 Consider the following simple program which computes the greatest common divisor

 of two integers selected from a given array of numbers:

 int gcd(int A[], int i, int j)

 {

 int t;

 do

 {

 if (A[i] < A[j])

 { t = A[i]; A[i] = A[j]; A[j] = t; }

 A[i] = A[I] - A[j];

 }

 while (A[I] > 0);

 return A[j];

 }

 void main()

 {

 int i = 3, j = 5;

 int A[] = { 1, 2, 3, 4, 5 };

 gcd(A, i, j);

 }

 Develop three-address intermediate code for this simple program fragment [25]

