UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Department of Computing

B. Sc. Examination 2013

IS52017B
Algorithms and Complexity Theory
Duration: 2 hours 15 minutes
Date and time:

There are five questions in this paper. You should answer no more than THREE questions. Full marks will be awarded for complete answers to a total of THREE questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

> THIS PAPER MUST NOT BE REMOVED
> FROM THE EXAMINATION ROOM

Question 1

(a) Consider the following adjacency matrix:
int$a=\{\{1,0,0,1\},\{1,0,0,1\},\{1,1,0,0\},\{1,0,1,0\}\}$

Draw a picture of the graph assuming the vertices are labelled 0-3.

(b) Consider the following weighted directed graph

Which is the length of the shortest path (in terms of distance) from 0 to 3 ? 4.5
(c) If a directed graph has many vertices and not many edges, it is more efficient in terms of space to represent it as a treeMap <Integer, HashSet <Integer>>,
mapping each vertex to the set of its immediate neighbours. Consider the following method

```
int f(treeMap <Integer, HashSet <Integer>> g, int i)
{
        int k=0;
        for (Integer v: g.keySet())
        {
            if (g.get(v).contains(i)) k++;
        }
    return k;
}
```

What do you think the purpose of this method is? It returns the in degree of vert i in graph g
(d) Consider the following directed graph:

Which one of the following adjacency matrices represents it?
i. int [][]$a=\{\{0,1,1,0\},\{0,0,0,1\},\{0,1,0,0\},\{1,0,1,0\}\}$
ii. int [][]$a=\{\{0,1,1,0\},\{1,0,0,1\},\{1,0,0,0\},\{1,0,1,0\}\}$
iii. int [] []$a=\{\{0,1,1,0\},\{1,0,0,1\},\{1,0,0,0\},\{0,0,1,0\}\}$
iv. None of the above.

None of the above
(e) Consider the following directed graph

How many paths are there from 0 to 2 ?

Infinitely many
(f) Consider the following weighted directed graph

Is there a shortest path (in terms of distance) from 0 to 1? Explain your answer.
No. Every time we go from 3 to 2 the more negative the shortest path becomes.
(g) Consider the following Java program
import java.util.HashSet;
class it1
\{

```
    static HashSet <Integer> f (double [] [] graph, int i)
    {
            HashSet <Integer> K= new HashSet <Integer>();
            for (int j=0;j<graph.length;j++)
            if (graph[i][j]>0) K.add(j);
            return K;
}
```

\}

If a was the adjacency matrix representing the graph:

What would the output of executing the statement
System.out. println(f(a,3))?
Explain your answer.

1. It is the out degree of 3 in the graph.

Question 2

(a) Consider the following plot:

What is the equation of the middle curve in the plot. i.e. the one which has the value of just over 30000 when x has the value 200?
$30^{*} x^{*} \log (x)$
(b) Which of the following functions will produce the largest values (asymptotically) as N gets bigger:
i. $f(N)=30 * N$
ii. $f(N)=N^{2}$
iii. $f(N)=N * \log (N)$
$f(N)=N^{2}$
(c) What is the worst-case time complexity of insertion sort?
quadratic
(d) If it take 5 nanoseconds to sort 10 elements using insertion sort, roughly how long will it take to sort 20 elements in the worst case?
(e) What is the time-complexity of this function in terms of N ?

```
int f(int N)
{
        if (N<2) return 1;
    return f(N-1)+f(N-2);
}
```

Exponential
(f) Here is a method for computing x^{n} :
static int powerA(int x, int n)
\{ int total=0; while ($\mathrm{n}>0$) \{total=total*x; $\mathrm{n}--$; \} return total;
\}

What is its time complexity?
Linear
(g) Here is a method for computing x^{n} :

```
static int powerB(int x, int n)
{
    if (n==0) return 1;
    int k=n/2;
    int z=powerB(x,k);
    int r=z*z;
    if (n%2==0) return r;
    return x*r;
}
What is its time complexity?
Log
```

(h) What is the time-complexity of this function in terms of N ?

```
int f(int N)
{
    int total=0;
    for (int i=0;i<N;i++)
        for (int j=0;j<N;j++)
            total=total+i+j;
    return total;
}
```

Explain your answer.
Quadratic loop within a loop
(i) What is the time-complexity of this function in terms of N ?

```
int f(int N)
{
    int total=0;
    for (int i=0;i<N;i++)
        for (int j=0;j<N;j++)
                for (int k=0;k<N;k++)
                total=total+i+j+k;
    return total;
}
```

Explain your answer.
Cubic loop within a loop within a loop

Question 3

(a) What is the depth of the following Binary Tree?

(b) Consider the following Java classes:

```
public abstract class binaryTree <T>
{
    abstract T root ();
    abstract binaryTree left ();
    abstract binaryTree right ();
}
class emptyTree <T> extends binaryTree <T>
{
    T root()
            {throw new IllegalArgumentException
                ("Can't do root of empty binaryTree <T>");
            }
    binaryTree <T> left ()
    {throw new IllegalArgumentException
        ("Can't do left of empty binaryTree <T>");
    }
    binaryTree <T> right ()
    {throw new IllegalArgumentException
        ("Can't do right of empty binaryTree <T>");
    }
}
```

```
class consbinaryTree <T> extends binaryTree <T>
{
    T root;
    binaryTree <T> left,right;
    consbinaryTree (T roo, binaryTree <T> l, binaryTree <T> r)
    {root=roo;left=l;right=r;}
    T root()
    {return root;}
    binaryTree <T> left ()
    {return left;}
    binaryTree <T> right ()
    {return right;}
}
```

What is the expression that generates the binary tree:

new consbinarytree(15, new consbinarytree(6 , new empty(), new empty())
new consbinarytree(18,
new consbinarytree(17,new empty(),new empty()
new empty()
)
)
(c) Formally define a binary search tree.

Its either an empty binary tree or a non empty binary tree Where (a) The left and right subtrees are both binary search trees.
and
(b) Every vertex in the left subtree is \leq the root
(c) Every vertex in the right subtree is \geq the root
(d) Explain what the following method does:

```
int f (binaryTree <Integer> t)
{
    int (t.left().isEmpty()) return t.root();
    else return f(t.left());
}
```

when applied to a binary search tree.
It returns its smallest element.
(e) Consider the following Java method:

```
ArrayList <Integer> flatten (binaryTree <Integer> t)
{
    ArrayList <Integer> m = new ArrayList <Integer> ();
    if (t.isEmpty()) return m;
        ArrayList <Integer> z1= flatten(t.left());
        ArrayList <Integer> z2= flatten(t.right());
        z1.add(t.root());
        z1.addAll(z2());
        return z1;
}
```

If b is a binary search tree, flatten(b) will produce a list with what properties? sorted in ascending order
(f) Consider the following Java class:

```
class f
{
    static binaryTree <Integer> insert(int i, binaryTree <Integer> b)
    {
        if (b.isEmpty())
            return new consbinaryTree (i,new emptyTree(),new emptyTree());
        else
```

```
        if (i < b.root())
                return new consbinaryTree (b.root(), insert(i,b.left()), b.right());
            else
                return new consbinaryTree (b.root(), b.left(), insert(i,b.right()));
}
static binaryTree <Integer> makeBST(int [ ] a)
{
        binaryTree <Integer> b = new binaryTree <Integer>();
        for (int i=0;i<a.length;i++) b=insert(a[i],b);
        return n;
}
public static void main( String[] argz)
{
    int [] a = {1,2,3,4,5,6,7,8};
    binaryTree <Integer> t = makeBST(a);
}
]
```

What will the depth of t be after running the program?

8

(g) Which of the following assignments would result in makeBST(a) having depth 3? (See previous question)
i. $a=\{1,2,3,4,5,6,7\}$;
ii. $a=\{4,1,5,3,7,2,6\}$;
iii. $a=\{4,7,3,6,2,1,5\}$;
iv. None of the above.
iii

Question 4

(a) Given the grammar G defined as

$$
\begin{aligned}
& S \rightarrow a \\
& S \rightarrow a S a \\
& S \rightarrow b \\
& S \rightarrow b S b
\end{aligned}
$$

Which of the following strings is not in $L(G)$?
i. $a a a$
ii. $a a b$
iii. aaabbbaaa
iv. bbb
(b) Given the grammar G_{4} defined as

$$
\begin{aligned}
& S \rightarrow T L \\
& S \rightarrow T+S \\
& T \rightarrow F \\
& T \rightarrow F * T \\
& F \rightarrow n
\end{aligned}
$$

Which of the following strings is not in $L\left(G_{4}\right)$?
i. n
ii. $n+n$
iii. $n * n+$
iv. $n * n * n * n * n * n * n * n$
(c) Given the grammar G defined as

$$
\begin{aligned}
& S \rightarrow a \\
& S \rightarrow a S a \\
& S \rightarrow b \\
& S \rightarrow b S b
\end{aligned}
$$

Draw the parse tree of aabaa.

$$
\begin{gathered}
\text { S } \\
/ \mathrm{I}
\end{gathered}
$$

(d) Explain with an example what an ambiguous grammar is.

2 marks for definition and three for example
(e) In the following Java Abstract Syntax Tree definition for arithmetic expressions with just one binary operator plus, something is missing in the plus class:

```
abstract class exp
{
    abstract int evaluate();
}
class num extends exp
{
    int n;
    num(int x)
    {
        n=x;
    }
    public int evaluate()
    {
        return n;
    }
}
class plus extends exp
{
        exp e1,e2;
        plus(exp x, exp y)
        {
            e1=x;
            e2=y;
        }
    public int evaluate()
    { //!something missing here!
    }
}
```

What is missing?

```
return e1.evaluate()+e2.evaluate();
```

(f) Write a Java expression for constructing the Abstract Syntax Tree corresponding to $1+2+3$?
new plus(new (1), new plus(new (2), new (3)))
(g) Consider the following Java code:

```
static String f(String s)
{
    String t=s;
    while (!t.isEmpty() &&
                                    (t.charAt(0)=='a' || t.charAt(0)=='b')
            )
            t=t.substring(1);
    return t;
}
```

What value is returned by the Java expression $f(" a 12 a b 34 ")$?

```
"aab"
```


Question 5

(a) In a game of chess there are about 30 legal moves in every position. A typical game of chess lasts about 40 moves. A game of chess is a sequence of moves. Roughly, how many different (40 move) games of chess are there? (Express in the form n^{m})
30^{40}
(b) Let $x=2^{y}$ Which of the following is true:
i. $y=\log _{e}(x)$
ii. $y=\log _{2}(x)$
iii. $x=\log _{2}(y)$
iv. None of the above.
ii
(c) Consider the following Java program

```
import java.util.ArrayList;
class it
{
    public static void main(String[] a)
        {
            ArrayList <Integer> K= new ArrayList <Integer>();
            K.add(1);
            K.add(1);
            System.out.println(K.size());
        }
}
What does it output?
[1,1]
```

(d) Consider the following Java program

```
import java.util.HashSet;
class it
{
    public static void main(String[] a)
        {
            HashSet <Integer> K= new HashSet <Integer>();
            K.add(1);
            K.add(1);
                System.out.println(K);
        }
    }
```

What does it output?
[1]
(e) Consider the following Java program

```
import java.util.TreeMap;
class it
{
    public static void main(String[] a)
        {
            TreeMap <Integer,Integer> K= new TreeMap <Integer,Integer>();
            K.put(1,2);
            K.put(1,3);
            System.out.println(K.get(1));
        }
}
What does it output?
3
(f) Which is the most suitable representation of a path of a graph in Java?
i. HashSet
ii. ArrayList
iii. Map
iv. ArraySet
Briefly explain your answer.
ii + 3 marks for explanation.
```

(g) Here is some pseudo-code for a well known algorithm:

```
Set S = {start};
Map <Integer,Double> Q = Map each Vertex to Infinity, except map start -> 0;
Map <Integer, ArrayList <Integer> > paths = Map each vertex to an empty ArrayList
while (Q is not empty)
{
    let v be the key of Q with the smallest value;
    if (v is end) return paths(end);
    let w be the value of v in Q;
    add v to S;
    for (each neighbour u of v that is not in S) do
    {
            let w1 be the the weight of the (v,u) edge + w;
            if w1 < the value of }u\mathrm{ in Q, then do the following:
                                    {
                                    update Q so now the value of u is w1
                                    update paths(u) to be paths(v) with u stuck on the end
                                    }
    }
    remove v from Q;
}
return [];
```

Name the algorithm and state what is it for?
Prim's Algorithm for finding a minimum spanning tree of a graph.

