
IS53036A January 2012 TURN OVER 1

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2012

ALL COMPUTING PROGRAMMES

IS53036A
Introduction to Natural Language Processing

Duration: 2 hours 15 minutes

Date and time: 12th January 2012 2pm

There are FIVE questions in this paper. You should answer THREE of them.
Each question is marked out of 25. The marks for each part of a question are
indicated at the end of the part in [.] brackets.

No calculators should be used.

THIS PAPER MUST NOT BE REMOVED FROM THE

EXAMINATION ROOM

IS53036A January 2012 TURN OVER 2

QUESTION 1

Tables 1 and 2 below show a selection of past tense forms in English.

a) Give a list of rules for deriving past tense forms based on the cases in

Table 1 only. You should justify your answer with reference to specific
examples. [6]

b) Revise your list of rules so that it covers all cases in both Table 1 and

Table 2.

[9]

Table 1

Present Past
bear bore
bend bent
creep crept
keep kept
lay laid
lend lent
pay paid
pity pitied
rely relied
reply replied
say said
send sent
sleep slept
study studied
swear swore
tear tore
wear wore

Table 2

Present Past
bind bound
clear cleared
fear feared
find found
hear heard
mend mended
play played
seep seeped
tend tended

IS53036A January 2012 TURN OVER 3

c) The following Python function implements a highly simplified past tense
morphology for English:

def past(verb):
 if verb == 'goes':
 return('went')
 elif verb == 'can':
 return('could')
 elif verb[-1] == 'e':
 return(verb+'d')
 else:
 return(verb+'ed')

Modify the function so that it correctly handles the past tense forms in
Tables 1 and 2, following the rules you have given in your answers to
(a) and (b). [6]

d) Let a1 and b1 be Python variables as follows:

a1 = ‘able baker charlie delta echo’
b1 = [‘able’, ‘baker’, ‘charlie’, ‘delta’, ‘echo’]

Show the results of executing the following Python commands. You
should explain your answers. [4]

i. a1[2:4]
ii. b1[2:4]
iii. ‘able’ in a1
iv. ‘able’ in b1
v. ‘lie’ in a1
vi. ‘lie’ in b1
vii. a1[3]+a1[1]
viii. b1[3]+b1[1]

IS53036A January 2012 TURN OVER 4

QUESTION 2

Consider the following grammar rules and answer questions (a – c) following.

S → NP VP
NP → Det N
NP → Det N PP
VP → V NP
VP → Cop Adj
PP → P NP

Det → a | the | my | twelve | some | most
N → friend | coat | sales | buttons | shoe | shoes | car | cars | student |
students
V → bought | likes | like | has | have
Cop → is | are | was | were
P → in | with | of
Adj → happy | angry | sad

a) Explain what is meant by the following, with some simple examples:
i. Recursive grammar rules
ii. Attachment ambiguity
iii. Left-recursion
iv. Centre-embedding
v. Recursive descent parsing [9]

b) Using the above grammar rules, draw syntax trees for:

i. My friend is angry
ii. My friend bought a coat with twelve buttons
iii. Some students have cars [6]

c) Modify the grammar using feature structures so that it generates the
unstarred sentences below as well as (2b)(i-iii) above but not the
starred ones. Explain the reasons for your modifications. [10]

i. My friend is a student
ii. My friends are students
iii. Most coats have buttons
iv. * Most coats have button
v. * The student are my friend.
vi. * Twelve student bought a car.
vii. * The students bought some shoe.

IS53036A January 2012 TURN OVER 5

QUESTION 3

The following paragraph is taken from a government report, How Fair is
Britain?

“Today, we live in a society where overt displays of prejudice are usually
unlawful, and almost always socially unacceptable. Surveys suggest that we
are more tolerant of difference, and less tolerant of discrimination. This is
mirrored in the evolution of new laws which prohibit discrimination and require
public bodies to promote equality. It is borne out by our expectations of public
figures: a career in the public eye can be cut short by a bigoted comment.”

This is the result of running the above text through the Lancaster Stemmer:

['today', ',', 'we', 'liv', 'in', 'a', 'socy', 'wher', 'overt', 'display', 'of', 'prejud', 'ar', 'us',
'unlaw', ',', 'and', 'almost', 'alway', 'soc', 'unacceiv', '.', 'survey', 'suggest', 'that',
'we', 'ar', 'mor', 'tol', 'of', 'diff', ',', 'and', 'less', 'tol', 'of', 'discrimin', '.', 'thi', 'is',
'mir', 'in', 'the', 'evolv', 'of', 'new', 'law', 'which', 'prohibit', 'discrimin', 'and',
'requir', 'publ', 'body', 'to', 'promot', 'eq', '.', 'it', 'is', 'born', 'out', 'by', 'our',
'expect', 'of', 'publ', 'fig', ':', 'a', 'car', 'in', 'the', 'publ', 'ey', 'can', 'be', 'cut', 'short',
'by', 'a', 'bigot', 'com', '.',]

a) Explain what is meant by word stems, with references to examples
from the above text. How can stemming be useful in applications such
as machine translation? [4]

b)

i. Make a list of rules which the stemmer has applied in this example.
ii. Discuss the motivations for the rules including any cases in this

example where you believe rules have been applied inappropriately.
 [12]

IS53036A January 2012 TURN OVER 6

c) The following Python code implements a very simple stemmer which
simply removes the endings ‘-e’, `-s' or `-es' if present, except for the
words ‘be’ and 'is':

def stemmer(word):
 [(s,end)] = re.findall('^(be|is|.*?)(e|s|es)?$',word)
 return s

i. Explain the meaning of the regular expression in this example.

What will be the result of stemming the word “loves”? Explain your
answer.

ii. Write a regular expression to replace the one in this function, which
implements the rules you have listed in your answer to (b). Discuss
any cases which you cannot straightforwardly encode as a regular
expression. [9]

IS53036A January 2012 TURN OVER 7

QUESTION 4

a) Explain the difference between information retrieval and information
extraction. [3]

b) Describe and give examples of the classes of strings matched by the
following regular expressions: [6]

i. [A-Z0-9]+
ii. [A-Z][0-9]*
iii. ([aeiou][^aeiou])*

c) The NLTK findall() method allows you to search for sequences of
tokens in a text and choose what part of the result to display, enabling
you to find instances of strings occurring in particular contexts. For
example, assuming news is a tokenised text:

>>> news.findall(r"<President><K.*>")
President Kennedy; President Kasavubu; President Kennedy's;
President Krushchev …
>>> news.findall(r"<President>(<K.*>)")
Kennedy; Kasavubu; Kennedy's; Krushchev …

Construct search patterns to find the following types of phrase. You
should think about what kinds of context these expressions can occur
in. You may give more than one pattern for each answer. Explain your
answers.

i. Personal names of the form firstname, lastname: Daniel
Radcliffe, Nitin Sawhney, Barack Obama etc.

ii. First names which are more commonly male: John, Abdul, Ivan
iii. First names which are more commonly female: Laura, Fatima,

Mary
iv. Names of streets: Downing Street, St James, Pennsylvania

Avenue
v. Place names like Paris, Gaza, Germany, Tibet, New York.

 [10]
d) Explain what is meant by precision and recall in the context of

information retrieval and extraction. What kinds of false negatives and
false positives might result from the queries you specified in your
answers to (4c) above?

[6]

IS53036A January 2012 TURN OVER 8

QUESTION 5

a) The following sentences are all ambiguous in some way. Express
their different meanings using paraphrases and explain the source
of the ambiguity in each case. [5]
i. The builders dumped the rubble in the skip
ii. Every man loves a woman
iii. Flying planes can be dangerous
iv. Either Kim will stay or Dana will leave and everyone will be

happy.
v. Whenever John meets Bill he buys him a drink.

b) Explain how probabilistic grammars can deal with ambiguity, with
reference to one of the examples above. [6]

c) The corpora that are distributed with the NLTK can be accessed in
various ways, including:

i. Raw text
ii. Tokenised
iii. POS-tagged
iv. Parsed

Explain the distinctions between these terms and give an example
of a corpus that includes parsed text. [5]

d) The following is part of the output of a bigram tagger, tested on an
excerpt from the Brown corpus news genre:

[('Then', 'RB'), ('Dick', 'NP'), ('Hyde', 'NP'), (',', ','), ('submarine-ball',
'NN'), ('hurler', 'NN'), (',', ','), ('entered', 'VBD'), ('the', 'AT'), ('contest',
'NN'), ('and', 'CC'), ('only', 'AP'), ('five', 'CD'), ('batters', 'NNS'),
('needed', 'VBD'), ('to', 'TO'), ('face', 'VB'), ('him', 'PPO'), ('before',
'IN'), ('there', 'RB'), ('existed', None), ('a', None), ('3-to-3', None),
('deadlock', None), ('.', None)]

i. What is a probable reason that the last six tokens have been

assigned the tag “None”?
ii. Explain how more accurate tagging can be achieved by using a

procedure that includes multiple taggers. [9]

IS53036A January 2012 END OF EXAMINATION 9

APPENDIX: REGULAR EXPRESSIONS

. Wildcard, matches any character
 ^abc Matches some pattern abc at the start of a string
abc$ Matches some pattern abc at the end of a string
 [abc] Matches one of a set of characters
 [A-Z0-9] Matches one of a range of characters
 ed|ing|s Matches one of the specified strings (disjunction)
 * Zero or more of previous item, e.g. a*, [a-z]*
 + One or more of previous item, e.g. a+, [a-z]+
? Zero or one of the previous item (i.e. optional), e.g. a?, [a-z]?
*? “Non-greedy” star operator
 a(b|c)+ Parentheses that indicate the scope of the operators

