UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2012

COMPUTING AND INFORMATION SYSTEMS

IS53032A Advanced Graphics and Animation

Duration: 2 hours 15 minutes

There are five questions in this paper. You should answer no more than THREE questions. Full marks will be awarded for complete answers to a total of THREE questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

No calculators should be used.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS53032A 2012

page 1 of 6

TURN OVER

Question 1 Transformations and projections

(a)	What is the difference between orthographic projection and perspective projection?	[4]
(b)	Giving an example, explain why orthographic projection might be useful in prac- tice.	[2]
(c)	Describe the effect of the following transformations:	
	i. translationii. rotationiii. scaleiv. perspective projection	[2] [2] [2] [2]
(d)	Explain how projection transforms are performed in a shader. Edit the Cg shader below so that it performed the correct transforms including projection.	[5]
	<pre>#pragma vertex vert #pragma fragment frag #include "UnityCG.cginc"</pre>	
	float4 _Colour;	
	<pre>struct v2f { float4 pos : SV_POSITION; float3 colour : COLOR0; };</pre>	
	<pre>v2f vert (appdata_base v) { v2f o; o.pos = v.vertex; o.colour = _Colour; return o; }</pre>	
	<pre>half4 frag (v2f i) : COLOR { return half4 (i.colour, 1); }</pre>	

(e) Edit the shader from part (d) so that the colour of the surface of the object changes with height. The top of the object should be a different colour from the bottom, the colour should not change as the object moves.

[6]

Question 2 Rasterization

- (a) Additive colour mixing is used in computer graphics. Explain what is meant by this. [5]
- (b) With reference to the diagram below, describe the algorithm to scanline fill a triangular polygon. [10]

(c) Explain the reasoning behind the Z-buffer algorithm. Describe the algorithm in pseudocode. [10]

IS53032A 2012

page 3 of 6

TURN OVER

Question 3 Illumination and shading

(a)	What is meant by the term 'depth cueing'?	[3]
(b)	Which three aspects of light reflection does the Phong illumination model capture and which phenomena of real physical reflection do these represent?	[6]
(c)	Explain the differences between flat shading and interpolation shading.	[4]
(d)	Describe four ways that light can be sent into a scene. Provide an example of that type of lighting and a basic diagram for each.	[12]

Question 4 Rendering

(a)	Explain why global illumination is required to achieve superior photorealism.	[3]
(b)	Describe the basic principles in the ray-tracing approach to producing computer generated images. State two advantages and two disadvantages of this technique.	[10]
(c)	Explain why a ray of light is traced backwards through the scene in ray tracing.	[6]
(d)	Rendering techniques can be view-dependent or view-independent, with advan- tages and disadvantages in both instances.	
	i. Ray-tracing is view-dependent. State three advantages of this.	[3]
	ii. Radiosity is view-independent. State three disadvantages of this.	[3]

Question 5 Textures

(a)	Why is the ability to add surface texture useful in computer graphics?	[4]
(b)	What is procedural texture mapping and what advantages does it offer?	[4]
(c)	Describe three coordinate systems used in texture mapping.	[9]
(d)	Explain the process involved when a sphere is used as the map shape in texture mapping.	[8]

page 6 of 6