
IS53011A 2012 TURN OVER 1

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2012

COMPUTING AND INFORMATION SYSTEMS

IS53011A Language Design and Implementation

Duration: 2 hours 15 minutes

Date and time:

There are five questions on this paper. You should answer no more that THREE
questions. Full marks will be awarded for complete answers to a total of THREE
questions. Each question carries 25 marks. The marks for each part of a question are
indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

No calculators should be used.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION

ROOM

IS53011A 2012 TURN OVER 2

Question 1.

a) Plot a picture of the algorithmic structure of the back end of a compiler. [4]

b) Define what is meant by one operator having a higher preference than another operator
 in a programming language. [3]

c) i) Explain briefly when we use regular grammars and when we use context-free grammars
 in compiler design. [5]

 ii) Give five initial strings that can be generated using the regular grammar: a (b | a*c)*. [4]

 iii) Construct a regular expression that defines binary numbers that are multiples of two. [3]

d) Let the following grammar for expressions with balanced parentheses be given:

 E → EE | (E) | ∈
 Check if this grammar is ambiguous or unambiguous by developing a parse tree
 for the following simple string: ()()(). [6]

IS53011A 2012 TURN OVER 3

Question 2.

a) Define recursively the notion of regular expressions over a given alphabet with elements:
 characters { a, b }, empty string {∈}, and relevant operations on them. [5]

b) Describe the nature of strings produced by the following grammar, in terms of the
 ordering of a’s and b’s:
 b* (abb*)* (a | ∈). [3]

c) i) Design a nondeterministic finite state automaton (NFA) using the Thompson’s construction
 algorithm for the following regular expression: a (abc | c)*. [5]
 ii) Convert the designed NFA into a deterministic finite-state automaton (DFA) using the subset
 construction algorithm, showing the operations of the ∈-closure and move functions. [9]

 iii) Develop the transition table for the generated DFA from part ii). [3]

IS53011A 2012 TURN OVER 4

Question 3.

a) Which are the main four components of a context-free grammar? [2]

b) Eliminate the immediate left recursion from the following context-free grammar: [4]

 S → SB | aE
 B → bE | d
 E → Ea | c

c) You are given the following context-free grammar, which is suitable for top-down parsing:
 S → aTFa
 T → bTb | a
 F → cFc | a

 Demonstrate the performance of the nonrecursive parser on the input string: ababcaca $
 using the following parsing table:

 a b c $
S S → aTFa

T T → a T → bTb

F F → a F → cFc

 i) Show the stack, the input and the output of the nonrecursive parser at each step. [14]

 ii) Write down the leftmost derivation of the given input string: ababcaca $ according
 to the output of the parser. [5]

IS53011A 2012 TURN OVER 5

Question 4.

a) Explain briefly the steps of the closure operation for developing parsing tables
 for bottom-up shift-reduce parsing. [5]

b) You are given the following grammar, which is suitable for bottom-up parsing:
(1) S ' → S
(2) S → T=F
(3) F → T

 (4) T → x
 (5) T → x+x
 Consider the following parsing table:

 Action Goto
State x + = $ S T F

0 s3 1 2
1 accept
2 s4 r3
3 s6 r4 r4
4 s3 8 5
5 r2
6 s7 r4 r4
7 r5 r5
8 r3

 i) Develop the canonical collection of items from this grammar using the sets-of-items
 construction algorithm. [8]
 ii) Demonstrate the moves of the bottom-up shift-reduce parser on the input string:
 x=x+x $ by showing the stack, the input and the output. [10]

 iii) Draw the parse tree produced by the parser. [2]

IS53011A 2012 TURN OVER 6

Question 5.

a) Give the two most important properties that an optimising compiler should provide. [4]

b) Consider the following implementation of the sort function:
 void Sort(int a[])
 {
 int i, j, x;
 i = 1;
 while (i < 5)
 {
 j = i;
 while (j > 0)
 {
 x = a[j-1];
 a[j-1] = a[j];
 a[j] = x;
 --j;
 }
 }
 ++i;
 }

 i) Translate this function into a three-address intermediate code. [10]

 ii) Optimise the developed three-address code by elimination of the induction variables
 in the loops, and also eliminate the dead code. [8]

 iii) Where does the name “three-address code” in the field of computer programming
 language design comes from? [3]

