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Question 1

(a) The first 16 hexadecimal integers ≥ 0 can be represented by 4 binary strings as
follows:

0000:0 0100:4 1000:8 1100:C
0001:1 0101:5 1001:9 1101:D
0010:2 0110:6 1010:A 1110:E
0011:3 0111:7 1011:B 1111:F

(1) Find the hexadecimal equivalent of the binary numeral 1101110.101.

(2) Find the binary of the hexadecimal numeral B09.A.

(3) Working in Hexadecimal system, compute the following sum. showing all your
workings.

11001001− 100111

[8]

(b) (1) Define what is meant by a rational number.

(2) Showing all your working, express the repeating decimal 0.272727 · · · as a frac-
tion in its simplest terms.

[6]

(c) (1) Let A = {2, 4, 8, 16, · · · , 1024} and B = {3n− 1 : n ∈ Z+}.
(i) Describe the set A by the rule of inclusion method.

(ii) Describe the Set B by the listing method.

(2) Let A, B and C be three subsets of a universal set U .

(i) Draw a labeled Venn Diagram showing A, B and C intersecting in the most
general way.

(ii) Shade the area for X = A ∩ (B′ ∪ C).

(iii) Show that: X = (A′ ∪ (B ∩ C ′))′.

[11]
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Question 2

(a) Let S = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19} and let p, q be the following proposi-
tions concerning the integer n in S

p : n is a multiple of two

q : n is a multiple of three.

(1) Find the set of values for which each of the following compound statements is
true:

p ∧ q; p ∨ q; p∧qq

(2) Express the following statement symbolically:

n is not a multiple of two or three.

(3) List the elements of the truth set for the statement in (2).

[8]

(b) (1) Let p and q be propositions. Use truth tables to prove that

p → q ≡qq −→qp

(2) Write the contrapositive of the following statement concerning an integer n.

If the last digit of n is 0, then n is divisible by 5.

[7]

(c) Let the sequence un be defined by the following recurrence relation:

un+1 = un + 2n, for all n ≥ 1 and u1 = 1

(1) Calculate u2, u3, u4 and u5, showing all your working.

(2) Prove by mathematical induction that

un = n2 − n+ 1, for all n ≥ 1.

(3) Showing all your working, find the sum of the first 100 terms of this sequence.

[10]
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Question 3

(a) Given any real number x (x ∈ R), the floor value is denoted by ⌊x⌋ and the
absolute value is denoted by |x|.

(1) Find ⌊
√
3⌋ and | − 3|.

(2) Find the set of values of a such that ⌊a⌋ = 2 and the set of values of b such
that |b| = 2.

(3) Consider the function f : R → Z and g : R → R is given by

f(x) = ⌊x− 2⌋ and g(x) = |x− 2|

(i) Write down the domain, co-domain and range of f and g.

(ii) For each function, say whether or not it is one to one, justifying your answer.

(iii) For each function, say whether or not it is onto, justifying your answer.

[12]

(b) (1) State the condition to be satisfied in order for a function to have an inverse.

(2) Given the function f : R → R where f(x) = 5x− 2.

(i) Show that f is a one to one function.

(ii) Show that f is an onto function.

(iii) Find the inverse inverse function f−1.

(3) Let g be a function defined as follows:

g : Z → R where g(x) = 5x− 2.

(i) Is g a one to one function? Explain your answer.

(ii) Is g an onto function? Explain your answer.

(iii) Is g invertible? Explain your answer.

[13]
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Question 4

(a) What properties should a graph have in order for it to be:

(1) a simple graph;

(2) a complete graph;

(3) a tree.

[6]

(b) (1) Say, with reason, whether or not it is possible to construct a simple graph with
degree sequence 5,3,2,2,2.

(2) Let Kn be a complete graph with n vertices, v1, v2, v3, · · · , vn.
(i) Draw K6.

(ii) Determine the number of edges of K6.

(iii) Determine the number of paths from v1 to v2 of length two.

(iv) Find an expression in terms of n for the number of paths from v1 to v2 of
length two in kn.

[13]

(c) A binary search tree is designed to store an ordered list of 2000 records at its
internal nodes.

(1) Find the records stored at the root (level 0) and level 1 of the tree.

(2) What is the height of the tree?

[6]
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Question 5

(a) Given the set S = {{a, b}, {a}, {b}, {a, b, c}}. R is a relation defined on S as
follows:

X R Y if X ⊆ Y where X,Y ∈ S

(1) Draw the relationship digraph R.

(2) Say, with reason, whether R is reflexive, symmetric, anti-symmetric and tran-
sitive.

(3) State, with reason, whether R is a partial order or not.

(4) Is R a total order? Explain your answer.

[12]

(b) Let S be the set {5, 6, 7, 8, 9, 10} and let R be a relation defined between the
elements of S by

x is related to y if (x− y) mod 2 = 0.

(1) Draw the relationship digraph for R.

(2) Determine whether or not R is reflexive, symmetric or transitive. In cases
where one of these properties does not hold give an example to show that it
does not hold.

(3) State, with reason, whether R is a partial order or not.

(4) Is R an equivalence relation? If yes find the equivalence classes.

[13]
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