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Question 1 Numbers

(a) Working in base 2 and showing all your working, compute the following: [4]

i. (10101)2 + (1111)2

ii. (11011)2 − (11)2

iii. (10101)2 × (11)2

(b) Express the binary number (1011.01)2 as a decimal, showing all your working. [2]

(c) Express the decimal number (349)10 in base 2. [2]

(d) Say to which of the sets N, Q or R the following numbers belong. If they belong
to more than one of these sets give all the sets. [2]

i. π

ii. 2
3 + 5
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Question 2 Sets

(a) i. Describe the following set by the rule of inclusion method:

{the set of integers which have a remainder of 1 on division by 4.}

ii. Describe the following set by the listing method:

{the set of positive multiples of 5 which are less than 80.}

[3]

(b) Let A, B and C be subsets of a universal set U . Shade the following regions on a
Venn diagram:

[5]

A ∩ B ∩ C ′

(A ∪ B ′) ∩ C

(c) You are given the following expressions:

U = {1, 2, 3, 4, 5, 6, 7, 8, 9}

A = {2, 4, 6, 8, 9}

B = {1, 2, 3, 4, 5, 6, 7}

List the elements in the following set [2]

(A′ ∪ B)′
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Question 3 Logic

(a) Let n ∈ {10, 11, 12, 13, 14, 15, 16, 17, 18, 19} and let p, q be the following proposi-
tions concerning the integer n.

p: n is a multiple of two

q : n is a multiple of three.

i. Find the set of values of n for which each of the following compound statements
is true: [4]

p ∧ q

p ∨ q

¬p ⊕ q

(b) List the elements of the truth set for the statement p ∨ q . [2]

(c) Let p and q be propositions. Use truth tables to demonstrate under what inter-
pretations the following expression is true or false:

[4]

(p → ¬q)→ (q → ¬p)
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Question 4 Relations

(a) Suppose we have the following set.

S = {1, 2, 3, 4, 5, 6}

Also suppose we have a relation R defined on S by the following condition.

xRy ⇔ (x + y) mod 3 = 0

In other words two elements are related if they have the same remainder when
divided by 3.

i. Draw the digraph of R.

ii. Say with reason whether or not R is

• reflexive

• symmetric

• transitive

In the cases where the given property does not hold provide a counter-example to
justify this.

[5]

(b) Another relation is defined on S in the following way.

xRy ⇔ x mod 3 = y mod 3

In other words two elements x and y are related if their sum is divisible by 3

i. Draw the digraph of this relation on S .

ii. Is this relation an equivalence relation or a partial order? Justify your answer.

iii. List the set of equivalence classes.

[5]
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Question 5 Matrices and Graphs

(a) Consider the following graph G. [5]

v1

v2 v3

v4

v5

i. Write down the adjacency matrix for this graph A.

ii. Compute A2 and thus state the number of walks of length 2 from:

v1 to v2

v2 to v3

v2 to v2

(b) Consider the following directed graph G. [5]

v1

v2 v3

v4

v5

i. Write down the adjacency matrix for this graph B .

ii. Compute B2 and thus state the directed walks of length 2.

iii. Calculate B3 and thus state the number of walks of length 3.
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Question 6 Matrices and Transformations in 2D

(a) The transformation matrix for the anti-clockwise rotation of 90 degrees is given
below.

A =

[
0−1
1 0

]

Use this matrix to calculate the transformation matrices for 180, 270 and 360 de-
grees. [3]

(b) Consider the following four points below that form a rectangle in Euclidean space.

(0, 0), (3, 0), (3, 1), (0, 1)

Sketch what happens to this triangle when the following transformation is applied. [4]

A =

[
0−1
1 0

]

Hence or otherwise find[
0−1
1 0

]−1

(c) Consider what happens to the rectangle described above when the following trans-
formation is applied to the same rectangle and determine whether or not it has an
inverse. [3]

A =

[
1 5
1 5

]
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Question 7 Matrices and Homogenous Coordinates

(a) Describe what is meant by Homogeneous Coordinates. [2]

(b) State with explanation whether the three points listed below are homogenous
coordinates for (3,4) and why. [1]

(12, 16, 4)

(15, 20, 5)

(300, 400, 100)

(c) Write down the general form of a point on the plane z = 1. [1]

(d) Apply each of the following matrices to a general point on the z = 1 plane and
use this to determine the nature of the transformation it represents. [6]

i.

A =

 1 0 tx
0 1 ty
0 0 1


ii.

A =

 sx 0 0
0 sy 0
0 0 1


iii.

A =

−1 0 0
0 1 0
0 0 1
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Question 8 Sequences and Series

The sum of the first n terms of an arithmetric progression with first term a and
common difference d is given by the following formula.

Sn=
n

2
(2a + (n − 1)d)

The sum of the first n terms of a geometric progression with first term a and
common ratio r is given by the following formula.

Sn=
a(rn − 1)

(r − 1)

Consider the following sequences.

(i) 1, 3, 5, 7, · · ·
(ii) 3, 5, 9, 17, · · ·
(iii) 1, −12 ,

1
4 ,
−1
8 , · · ·

(iv) 1, 23 ,
3
4 ,

4
5 , · · ·

(a) For each sequence write down the next two terms. [2]

(b) Identify each sequence as arithmetic, geometric or neither. If you identify it as
arithmetic, specify the common difference d . If you identify it as geometric, spec-
ify the common ratio r . [2]

(c) Write down the nth term (un) for each sequence. [2]

(d) Calculate the sum of the first 10 terms of the first sequence. [2]

(e) From the formula above deduce the formula for the infinite sum of a converging
series. Then, for any convergent series in the list above calculate the sum to infinity. [2]
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Question 9 This question is about sketching the shape of functions

(a) Sketch the following graphs showing where the graphs cross the x -axis and y-axis. [5]

i. y = x 2

ii. y = (x 2 − 1)

iii. y = (x )2

iv. y = (x − 1)2(x − 1)

v. y = −(x − 1)(x − 2)(x − 3)(x − 2)

(b) Decide whether the following functions are odd, even, periodic or otherwise ex-
plaining your answer. [5]

i. f (x ) = x 2 − 4

ii. f (x ) = x 3 − 5x

iii. f (x ) = sin2(x ) + cos2(x )

iv. f (x ) = tan(x )− 1

v. f (x ) = sin(x + π)
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Question 10 This question is about trigonometry

60

90 A

8

X

4

Please consider the diagram above.

(a) What is the value of A? [1]

(b) What is the value of X? [1]

(c) What is sinA leaving your answer as a fraction? [1]

(d) What is cosA leaving your answer as a fraction? [1]

(e) What us tanA leaving your answer as a fraction? [1]

(f) Demonstrate that in this case sin2A + cos2 = 1. [2]

The cosine rule is defined in the next diagram.

IS51002B (CIS102B) 2012 page 11 of 12 TURN OVER



A
B

C
a

b

c

a2 = b2 + c2- 2*b*c*cosA

Cosine Rule

You are also told that one boat sets off sailing from a port Due East at a constant
speed of 4 miles an hour at 3pm. An hour later another boat sets sail at 5 miles
an hour in the North West direction. Using the cosine rule or otherwise determine
how far away the boats are at 6pm leaving your answer as a number and a quotient.
(You do not need to calculate this number). You may need to use the result [3]

cos
(
3π
4

)
= 1√

2
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