UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2011

Computer Science

IS53032A (CC349) Advanced Graphics and Animation

Duration: 2 hours 15 minutes

Date and time:

There are five questions in this paper. You should answer no more than three questions. Full marks will be awarded for complete answers to a total of three questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 75 marks available on this paper.

This is a practical examination; each answer requiring code or other computational material should be named according to question number, part and sub-part: for example, Q5_b_2.pde for a Processing sketch in answer to part (b) sub-part (ii) of question 5. Save your answer to the exam submission folder. You are responsible for ensuring that your answers have been saved in the correct location.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

(a	a) What is a surface Normal? How is it used in lighting calculations?	[10
----	---	-----

(b) Write a complete vertex shader that calculates diffuse illumination from a directional light source. [15]

- (b) Give a case where it would be better to use linear interpolation rather than spline interpolation for inbetweening keyframes. [5]
- (c) Given a point with initial position vector p write Processing code to move it towards the current mouse position with constant speed 2 pixels per frame. [10]

(a) State which of these is a rotation matrix, a scale matrix and a translation matrix? [6]

i.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ii.

$$\begin{bmatrix} 0.93 & 0 & -0.36 & 0 \\ 0 & 1 & 0 & 0 \\ 0.36 & 0 & 0.93 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

iii.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(b) Describe the skeletal animation method.

[9]

(c) Describe how you would apply the Cyclic Coordinate Descent method of inverse kinematics to making sure a character's feet stay on the ground when walking over bumpy terrain.

[10]

(a) Explain the following computer graphics terms:

pixel	2	
		,

- ii. graphics pipeline [2]
- iii. wireframe [2]
- iv. rasterisation [2]
- (b) Describe, using diagrams where appropriate, an algorithm that draws a straight line between screen co-ordinates (x_0, y_0) and (x_1, y_1) using only integer arithmetic. Assume that the line is in the first octant.
- (c) Describe an effect that would typically be produced using: [8]
 - i. A vertex shader.
 - ii. A fragment shader.

[9]

(a)	Define texture mapping and describe how it works and what it is used for.	[11
(b)	Describe the two following methods and how they differ from ordinary texture mapping.	
	i. Bump mapping	[7
	ii. reflection mapping	[7