UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2011

COMPUTER SCIENCE

IS51015A Computer Science 1
Duration: 1 hour 30 minutes
Date and time:

There are three questions in this paper. You should attempt them all. The total number of marks for this paper is 100. The marks for each part of a question are indicated at the end of the part in [.] brackets.

No calculators should be used.

THIS EXAMINATION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

QUESTION 1

(a) For each of the following types, give one example of a value of that type:
(i) num X num
(ii) num X bool
(iii) num X num X num
(iv) char X num
[4 Marks]
(b) Give the value of each of the following boolean expressions:
(i) true and false;
(ii) false or true;
(iii) not(false or true);
(iv) not(not(false) and true);
[4 Marks]
(c) Given the following truth table:
$p \quad q \quad p$ implies q

T	T	T
T	F	F
F	T	T
F	F	T

define implies: bool X bool -> bool; in Hope, using or and not, by completing the right hand side of the following definition:
implies(p,q) <=
[4 Marks]
(d) Make a truth table for the function f given by:

```
f:bool X bool -> bool;
f(p,q) <= p and (not(q));
```

(e) Write a regular expression corresponding to the finite state machine below.

(The state containing two circles represents a 'stop' state).
[4 Marks]
(f) What is the language accepted by the finite state machine below.

(The state containing two circles represents a 'stop' state).
[4 Marks]
(g) Draw a finite state machine for the regular expression $(a \mid b)^{*} c$
[4 Marks]
(h) Give a regular expression whose language is recognised by the function f below:

```
f: list(char) -> bool;
g: list(char) -> bool;
f(nil) <= false;
f(x::l)<= if x='a' or x='b'
    then g(l)
    else false;
g(nil) <= false;
g(x::nil) <= x='c';
g(x::(y::l)) <= if x='c'
        then g(y::l)
        else false;
```


QUESTION 2

(a) Define a function $\max (m, n)$

```
max:num X num -> num;
```

such that $\max (m, n)$ returns the larger of m and n. For example, $\max (2,4)$ returns $4:$ num.
[4 Marks]
(b) Using max, above, define a function max0f3 which returns the maximum of three numbers (you must not use an if).
[4 Marks]
(c) Given the functions:

```
head: list(alpha) -> alpha;
head(x::m) <= x;
tail: list(alpha) -> list(alpha);
tail(x::m) <= m;
```

give the value and the type of each of the following expressions:
(i) head([1]);
(ii) tail([1]);
(iii) head(tail([1,3,2]));
(iv) tail(tail([1,3,2]));
[4 Marks]
(d) Given the function:

```
f: list(alpha) -> num;
f(nil) <= 0
f(x::m) <= 1+ f(m);
```

give the value and the type of each of the following expressions:
(i) $\mathrm{f}([79])$;
(ii) $f([1,2,3,1])$;
(iii) $f(t a i l([1]))$;
(iv) $f($ tail (tail $([1,3,2])))$;
[4 Marks]
(e) Given the two functions:

```
firstfew: num X list(alpha) -> list(alpha);
firstfew(0,k) <= nil;
firstfew(n+1,x::m) <= x:: firstfew(n,m);
lastfew: num X list(alpha) -> list(alpha);
lastfew(0,k) <= k;
lastfew(n+1,x::m) <= lastfew(n,m);
```

What is the value and type of firstfew(3,lastfew(3, $[1,2,3,4,5,6,7,8])$);
[4 Marks]
(f) Write a function for adding up all the numbers in a list of numbers.
[4 Marks]
(g) Write a function elementAt: num X list(alpha) -> alpha such that elementAt (n, k) returns the element at position n (starting from 0) in the list k .
[4 Marks]
(h) Write a function which takes a list and returns its 'middle' element (If the list has an even number of elements, then make a reasonable choice for the middle element). You may assume the length function has already been defined. (You may use elementAt above.)
[5 Marks]

QUESTION 3

(a) Give the value and the type of each of the following expressions:
(i) $1 \&$ empty;
(ii) ([] \& empty) U ([2] \& empty);
(iii) 'a' isin ('b' \& empty);
(iv) $[1,2]$ isin ([1,2] \& empty);
[4 Marks]
(b) Briefly describe the differences between sets and lists.
[4 Marks]
(c) Describe what the function gg, below, does.

```
gg: set(alpha) -> num;
gg(S) <= if S = empty
    then 0
    else let (a,T) == choose(S)
        in 1 + gg(T);
```

[4 Marks]
(d) Describe what the function ff, below, does.

```
ff: set(alpha) X set(alpha) -> set(alpha);
ff(S1,S2) <= if S1 = empty
    then empty
    else let (a,S3) == choose(S1)
                        in if a isin S2
                        then a & ff(S3,S2)
            else ff(S3,S2);
```

(e) The set difference between X and Y is the set of elements that are in X but not in Y. Define the function:

```
setDifference: set(alpha) X set(alpha) -> set(alpha);
```

Hint: it will be similar to the function $f f$, above.
[4 Marks]
(f) A directed graph whose nodes (vertices) are of type alpha can be represented as type graph(alpha) == set(alpha X alpha);
where each pair (x, y) in the set represents an edge from x to y.
Describe what the following function, f, does.

```
f: graph(alpha) -> set(alpha);
f(G) <= if G=empty
    then empty
    else let ((a,b),G1) == choose(G)
                in (a & (b & empty)) U f(G1);
```

(g) The out-degree of a vertex v in a graph g is the number of edges of g emerging from v. Write a function:

```
outdegree: alpha X graph(alpha) -> num;
```

such that outdegree (v, g) returns the out-degree of vertex v in the graph g .
[5 Marks]
(h) Write a function, nexts, which given a vertex v and a graph g, finds the set of vertices that are at the end of an out-going edge from v.
[5 Marks]

