UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2010

Creative Computing

IS52020A (CC227) Creative Computing 2

Duration: 3 hours

Date and time:

There are six questions in this paper. You should answer no more than four questions. Full marks will be awarded for complete answers to a total of four questions. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

This is a practical examination; each answer requiring code or other computational material should be named according to question number, part and sub-part: for example, $Q5_b_2.pde$ for a Processing sketch in answer to part (b) sub-part (ii) of question 5. Save your answer to the exam submission folder. You are responsible for ensuring that your answers have been saved in the correct location.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

IS52020A (CC227) 2010

page 1 of 7

TURN OVER

Question 1 Digital Images and Colour Spaces

- (a) Briefly describe the following colour spaces, giving for each an example of a situation where they are used: [12]
 - i. HSB;
 - ii. CMYK;
 - iii. sRGB;
 - iv. CIE LAB.
- (b) Write in a single sketch two *Processing* functions, one computing the x coordinate and one the y coordinate in the transformation from CIE XYZ colour coordinates to CIE xyY chromaticity-luminance coordinates. Your functions should each accept three floating point arguments corresponding to X, Y and Z, and return one floating point value.
- (c) Using your functions, or otherwise, transform the following CIE XYZ colour specifications to CIE xyY coordinates, and identify any colours confusable by those with tritanopic anomalous colour vision.
 - i. {0.41, 0.25, 0.83};
 - ii. $\{0.25, 0.25, 0.095\}$; and
 - iii. $\{0.3, 0.5, 0.2\}$

[8]

[5]

Question 2 Multimedia Information Retrieval

- (a) Define the following distance measures, and give examples of situations where their use is appropriate:
 - i. Euclidean distance;
 - ii. Manhattan distance;
 - iii. Hamming distance.
- (b) A collection of audio files is stored on disk; in addition, you may assume that each sound file has had its average (root-mean-square) amplitude precomputed.
 - i. Describe a data structure and an algorithm that will allow the retrieval of the sound file whose loudness is perceptually closest to the loudness of a query sound file.
 - ii. Comment on the efficiency of your solution to part b.(i) above;
 - iii. The disk store contains four sound files, with root-mean-square amplitudes {0.3, 0.25, 0.22, 0.19} corresponding to filenames {first.wav, second.wav, third.wav, fourth.wav} respectively. Which filename should be retrieved for a query audio file with a root-mean-square amplitude of 0.2348? Show your working.

[7]

[7]

[3]

[8]

page 3 of 7

TURN OVER

Question 3 Signals

(a)	Write down a mathematical expression for a general sinusoidal oscillation as a function of time, and with reference to that expression or otherwise define the terms amplitude , frequency and phase .	[8]
(b)	Describe, as precisely as possible, the effect of playing simultaneously two sinusoidal audio signals, each having the same amplitude and phase, but one having a frequency of 220Hz and the other a frequency of 222Hz.	[5]
(c)	Suggest one application of the phenomenon in part (b).	[2]
(d)	Describe what is meant by Fourier analysis.	[2]
(e)	With particular reference to the structure of the inner ear, explain how the human hearing apparatus effectively performs Fourier analysis on sound waves.	[8]

Sound, Hearing and Music Question 4

Write a short essay on **each** of the following topics:

- i. melody, harmony and rhythm;
- ii. digital music file formats.

Each essay is worth half the marks for this question.

IS52020A (CC227) 2010 page 5 of 7

TURN OVER

Question 5 Systems and Filters

(a) In the context of systems and signal processing, define the following terms:

i.	impulse response;	[3]
ii.	a linear system;	[3]
iii.	a time-invariant system;	[3]
iv.	an LTI system.	[1]

- iv. an LTI system.
- (b) A filter for audio has the kernel

$$\frac{1}{2}\left(\begin{array}{cc}1&1\end{array}\right)$$

Using Octave, write a function to implement the processing of audio data with this filter. You may assume that your function receives a matrix argument representing the audio data, one vector per channel, and should return the new data in the same format.

[8]

[2]

(c)	Apply this filter to the data in the audio file provided, and save the resulting audio	
	data to file in wav format.	[5]

(d) What effect does the filter in part (b) represent?

page 6 of 7

Question 6 Visual Perception

(a)	In the context of cinematic projection, explain the difference between <i>frame rate</i>	
	and <i>flicker rate</i> , including in your explanation the different perceptual effects caus-	
	ing the distinction to be necessary, and typical rates chosen in current systems.	[8]
(h)	Describe the percentual effects known as hete motion and the nhi sheremenon	

- (b) Describe the perceptual effects known as *beta motion* and the *phi phenomenon*, with particular reference to typical timescales and the responses that they elicit. [8]
- (c) Construct a *Processing* sketch illustrating at least one of the Gestalt Principles of grouping. Include, either in a written answer or in a comment section in your sketch the principle(s) illustrated, and how your sketch does so.

page 7 of 7