UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

Foundation Year 2008/09

COMPUTING

IS50001A (FY02) Foundation Mathematics for Computing

EXAMINATION

Duration: 3 hours

You should answer all the questions on this paper. There are ten questions in total. All questions are worth 10 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

No calculators should be used.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

TURN OVER

1. This question is about numbers, fractions, ratios and the binary and hexidecimal number systems

- (a) Convert the following into decimals.
 - i. 0.333...

ii. 0.125

- (b) Write the following as fractions in their simplest form. [2]
 - i. $\frac{238}{1000} = \frac{119}{500}$ ii. $0.0125 = \frac{125}{10000} = \frac{1}{80}$

(c) Write how much Asif, Beth and Charlie get if they share £5000 in the following rations [2]

- i. £500 for Asif £2000 for Beth and £2500 for Charlie
- ii. £10 for Asif £100 for Beth and £890 for Charlie
- iii. £50 for Asif £500 for Beth and £4450 for Charlie
- (d) Calculate the following and show your working in binary [3]
 - i. 10101₂
 - ii. 1101₂
 - iii. $10010_2 * 100100_2 = 110110_2$

[3]

2. This question is about sets and logic

Complete truth tables for the following an hence decide whether each of the logical formula is a contingency, tautology or a contradiction.

(a)

$$(P \land \neg Q) \lor Q$$

Р	Q	$\neg Q$	$P \land \neg Q$	$(P \land \neg Q) \lor Q$
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	F	F	Т
F	F	Т	F	F

This is a contingency

(b)

$$(\neg P \Rightarrow \neg Q) \Rightarrow (\neg P \Rightarrow R)$$

[6]

[4]

Р	Q	R	$\neg P$	$ \neg Q$	$ \neg P \Rightarrow \neg Q$	$\neg P \Rightarrow R$	$(\neg P \Rightarrow \neg Q) \Rightarrow (\neg P \Rightarrow R)$
Т	Т	Т	F	F	Т	Т	Т
Т	Τ	F	F	F	Т	Т	Т
Т	F	Τ	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	T	F	F	Т	Т
F	Т	F	T	F	F	F	Т
F	F	Т	T	Т	Т	Т	Т
F	F	F	T	Т	Т	F	F

This is a contingency

3. This question is about sets and Venn diagrams

The sets A, B and C are defined as follows.

$$A = \{1, 3, 5, 7, 9\}$$
$$B = \{0, 1, 2, 4, 6, 8\}$$
$$C = \{2, 4, 5, 6, 7\}$$
$$\epsilon = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

(a) Calculate the following

i.
$$A \cup B = \epsilon$$

ii. $A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6, 7, 9\}$
iii. $(A \cup B) \cap C = C$
iv. $\overline{A} \cup B = B$
v. $\overline{A \cap C} = \{0, 1, 2, 3, 4, 6, 8, 9\}$

(b) Shade the following regions on a venn diagram

[5]

[5]

i.
$$P \cap Q$$

ii. $\overline{P \cap Q}$
iii. $\overline{(P \cup Q) \cap \overline{R}}$

IS53020A (FY02) 2008

4. This question is about series

Consider the following series

- (a) $x_k = 3 + 4k$
- $(b) \quad x_k = 3 5k$
- $(c) \quad x_k = k + \frac{1}{k}$
- $(d) \quad x_k = \frac{2}{3^k}$

(a) $x_1 = 7$ and $x_2 = 11$	[2]
(b) (a) is arithmetic, (b) is arithmetic, (c) is neither and (d) is geometric	[4]
(c) -87	[2]
(d) 1	[2]

5. This questions is about linear, simultaneous and quadratic equations

(a) Solve the following equations

[4]

[3]

x = 0

 $x = -\frac{1}{10}$

(b) Solve the following quadratic equations by factorisation [3]

$$(x+1)(x-2) = 0, x = 1, -2$$

$$(2x-1)(x+2) = 0, x = \frac{1}{2}, -2$$

(c) Solve the following simultaneous equations

$$x = -5, y = 3$$

IS53020A (FY02) 2008

6. This question is about functions

Consider the following functions

$$f(x) = x^{3}$$
$$g(x) = \frac{1}{x+1}$$
$$h(x) = 3x - 1$$

(a) Evaluate the following

[3]

i. 1
ii. 512
iii. 1
(b)
$$8x^3$$
 and $(x+1)^3$ [2]
(c) $\frac{1}{x} - 1$ [2]
(d) $\frac{1}{9}x^{-3}$ [3]

7. This question is about plotting graphs

- (a) See below x = -1, y = 3 [4]
- (b) See below x = 1, x = -1 [3]
- (c) Sketch the following graphs. Please see below [3]

$$y = x^{3}$$
$$y = -x^{3}$$
$$y = (-x)^{3}$$

8. This question is about trigonometry

(a)	See below	[2]
(b)	Make x the angle between the sides of length 3 and 4. Then calculate	[3]

- (b) Make *x* the angle between the sides of length 3 and 4. Then calculate
 - $\cos x = \frac{3}{5}$ $\sin x = \frac{4}{5}$ $\tan x = \frac{4}{3}$
- (c) In which quadrant (1,2,3 or 4) does the angle x lie for the following situations [2] sin x > 0 and cos x > 0 quadrant 1 sin x < 0 and cos x > 0 quadrant 2
- (d) Solve sin x = sin 2x for $0 \le x < 360$ solutions x = 0, 90, 180, 270[3]

9. This question is about matrices

(a) Evaluate the following

$$\begin{pmatrix} 3 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & 3 & 6 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 2 \\ 2 & 5 & 9 \end{pmatrix}$$

(b) Evaluate the following

$$\left(\begin{array}{cc}2&1\\3&6\end{array}\right)\left(\begin{array}{cc}1&2\\2&3\end{array}\right) = \left(\begin{array}{cc}4&7\\15&24\end{array}\right)$$

- (c) Write down the identity 4 by 4 matrix.
 - $\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$

(d) Find the inverse of the following Matrix. It is its own self-inverse

$$\left(\begin{array}{cc} -1 & 0\\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} -1 & 0\\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$$

(e) Prove that the following matrix has no inverse.

$$\left(\begin{array}{cc}a&b\\a^2&ab\end{array}\right)$$

determinant = $a^2b = a^2b = 0$ so there is no inverse matric

IS53020A (FY02) 2008

[2]

[2]

[2]

[2]

[2]

10. This Question is about Probability

- (a) This is about tossing 2 coins
 - i. What is the probability of obtaining exactly two heads? $\frac{1}{4}$
 - ii. What is the probability of obtaining exactly one head? $\frac{1}{2}$
 - iii. What is the probability of obtaining exactly no heads? $\frac{1}{4}$
- (b) If I tossed a coin 5 times what is the probability that it would be heads every time? $(\frac{1}{2})^5 = \frac{1}{32}$ [2]
- (c) A biased die with 6 sides has the following probabilities

$$P(1) = 0.1$$

 $P(2) = 0.15$
 $P(3) = 0.1$
 $P(4) = 0.2$
 $P(5) = 0.2$
 $P(6) = unknown$

- i. What is P(6)? 0.25
- ii. What is the probability of getting an odd number? 0.4
- iii. What is the probability of throwing the dice twice and getting a total score of 3 = 0.015 + 0.015 = 0.03?
- iv. What is the most likely score when you toss a dice twice? 7

[3]

[5]