
UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2006

COMPUTING AND INFORMATION SYSTEMS

IS53020A (CIS335)
Logic Programming

Duration: 2 hours and 15 minutes

Date and Time:

There are five questions in this paper. Your should answer no more than THREE questions.
Full marks will be awarded for complete and correct answers to a total of THREE questions.
Each question carries 25 marks. The marks for each part of a question are indicated at the
end of the part in [.] brackets.

There are 75 marks available on this paper.

No calculators should be used.

THIS PAPER MUST NOT BE REMOVED
FROM THE EXAMINATION ROOM

IS53020A (CIS335) 2006 1 TURN OVER

1. This question is about Prolog program syntax, unification, datatypes and syntax-related meta-
programming.

(a) Write down the most specific syntactic category, in Prolog, of the underlined part of each
of the following items. For example, the most specific category of the underlined part of
p(X) is “variable”.

i. q(2) :- q(a,2). [1]

Answer: Clause or Rule (Not Term).

ii. q(a(1,X)). [1]

Answer: Term or Argument.

iii. a = 1. [1]

Answer: Functor or Predicate Name.

iv. p(X) :- \+ q(X,Y), r(Y). [1]

Answer: Literal or Clause Head.

v. p(X) :- \+ q(X,Y), r(Y). [1]

Answer: Clause Body or Conjunction of Literals.

(b) What are the effects of executing the following queries in SWI Prolog, in terms of success
and failure and, where appropriate, the instantiation of variables?

i. a(X) = b(Y). [1]

Answer: Fail.

ii. a(X,Y) = a(1,Z), f(g(Z),X)=f(g(X),Z). [2]

Answer: Success: X=Y=Z=1.

iii. f(X,g(X)) = f(Z,Y), Y = Z. [4]

Answer: Success: X=g(**). (1 for success, 2 for right unifier, 1 for exactly right
unifier syntax.)

(c) Explain the following syntactic types in Prolog in terms of atoms, terms and numbers and
truth values:

i. atomic [2]

Answer: An atomic term is either an atom or a number.

ii. literal [2]

Answer: A literal is a term whose position in a Prolog clause, at the top level, means
that it is associated with a truth value during execution of a program.

IS53020A (CIS335) 2006 2 TURN OVER

(d) Explain in detail the difference between the=/2 predicate and the==/2 predicate, giving
at least one example of a pair of arguments on which they differ. [5]

Answer: =/2 succeeds if its two arguments unify [1]; ==/2 succeeds if its two arguments
are syntactically identical [1]. The two predicates are the same if the terms being compared
are fully ground, but not if they contain variables [1]. In the event of a variable X being
unified with any structure, including another variable, X is set to contain the value with
which it is unified; on the other hand a variable can only be syntactically identical with
itself [1]. For example, f(X,Z) = f(a,Y) will succeed, with the unifier X=a, Y=Z
(so Y and Z become the same varible); on the other hand, f(X,Z) == f(a,Y) will
fail, because a (an atom) is not the same as X (a variable), and Z and Y, although both
variables, are not the same variable [1].

(e) Write down Prolog data structures which will unify with the following data and nothing
else, making all of the unified values available to further unification.

i. A list containing at least 2 items. [1]

Answer: [A,B|C]

ii. Anything. [1]

Answer: X (Any named variable; not .)

iii. A list of exactly 3 items, whose second element is a list containing only the atoma.

Answer: [A,[a],B] [1]

iv. B = 24. [1]

Answer: C = D

IS53020A (CIS335) 2006 3 TURN OVER

2. This question is about Prolog list processing and negation.

(a) What variable instantiations, if any, are caused by the following list unifications?

i. [H|T] = [a,b,c]. [2]

Answer: H=a, T=[b,c] .

ii. [a|b] = [a,b]. [1]

Answer: Fail.

iii. [[X|Y]] = [[1,2,3]], [X,Y] = Z. [3]

Answer: X=1, Y=[2,3], Z=[1,[2,3]] .

(b) The predicatemember/2 is true if the term in its first argument is an element of the list
in its second. It is defined thus:

member(H, [H|]).
member(X, [|T]) :- member(X, T).

i. Themember/2 predicate, above, can be modified to succeed when its first argument
is not a member of its second argument, by using Prolog negation, thus:

\+ member(Element, List).

Write a predicate,notmember/2 , which succeeds when its first argument is not
a member of its second (which is assumed to be a list). Your predicate should be
recursive, and should NOT use Prolog negation, EXCEPT to negate a call of=/2 .

[13]

Answer:

notmember(, []). [4]
notmember(X, [H|T]) :- [3]

\+ X = H, [3]
notmember(X, T). [3]

ii. Using member/2 , write a predicate,notinboth/3 , which succeeds if its first ar-
gument is a member of either its second or its third argument, but not both, assuming
they are lists. You may use Prolog negation if you wish. [6]

Answer: notinboth(A, B, C) :- member(A, B),
\+ member(A, C).

notinboth(A, B, C) :- member(A, C),
\+ member(A, B).

IS53020A (CIS335) 2006 4 TURN OVER

3. This question is about metaprogramming.

(a) Explain the function of the following metapredicates in Prolog.

i. nonvar/1 [2]

Answer: ground/1 succeeds if and only if its argument is at least partly instanti-
ated.

ii. \==/2 [2]

Answer: \==/2 succeeds if and only if its two arguments are syntactically non-
identical.

iii. functor/3 [6]

Answer: functor/3 succeeds when its first argument is a term, and second and
third arguments are the functor and arity, respectively, of that term.

(b) Explain in detail the behaviour of the metainterpretersolve1/1 , below, and compare
and contrast the effects of using the alternative,solve2/1 , on the simple Prolog pro-
gram, p/2 , also below, as far as the first solution found. You need not discuss error
handling; you will not be penalised for minor syntactic errors in your example; and you
need not write out any repeated sequences of events more than once (i.e., just explain that
there is a repeat). Use the numbers and letters given in the comments to refer to individual
clauses. [15]

solve1(true). % Cl. 1
solve1((Goal1, Goal2)) :- solve1(Goal1), % Cl. 2

solve1(Goal2).
solve1(Goal) :- clause(Goal, Next), % Cl. 3

solve1(Next).

solve2(true). % Cl. A
solve2((Goal1, Goal2)) :- solve2(Goal2), % Cl. B

solve2(Goal1).
solve2(Goal) :- clause(Goal, Next), % Cl. C

solve2(Next).

p(X, Y) :- q(X, Y), r(Y).

q(a, b).
q(a, c).

r(c).
r(b).

?- solve(p(a, T)).

Answer: solve1/1 interprets Prolog programs including conjunction using the default
Prolog unification mechanism.[3] It operates on the given query and program as follows.

IS53020A (CIS335) 2006 5 TURN OVER

i. p(a, T) is matched first against true from Clause 1, which fails; equally, it
cannot match against (Goal1, Goal2) , so Clause 3 is the only one that can
match. Goal is unified with p(a, T) .[1]

ii. clause(p(a, T), Next) looks for a matching clause in the database and,
as a result, unifies Next with q(a, T), r(T) . solve1/1 is then applied
to this term.[1]

iii. This time, only Clause 2 will match with the term, so Goal1 is unified with q(a,
T) and Goal2 is unified with r(T) .[1]

iv. Now, the body of Clause 2 is executed. First, solve1(q(a, T)) , is executed.
This can only be handled by Clause 3. A match is found, T is unified with b and Next
is unified with true , because this is a fact and not a rule.[1]

v. true unifies with the argument of Clause 1 of solve1/1 , so this branch of the
execution is finished.[1]

vi. Prolog now returns to the second literal of the conjoined goal at 3(b)iv, above. The
sequence for this branch is identical to that for the first literal generated by Clause 2,
above. [1]

vii. Clause 2 is now complete, and there is nothing else to execute, so the run has suc-
ceeded, with the instantiation T=b.[1]

viii. In contrast, solve2 executes the program in a different order, and so finds a different
solution first, as follows.[1]

ix. As far as and including 3(b)iii, above, the execution is the same as for solve1 .
However, at this point, Goal2 in Clause B is executed by solve2 , rather than
Goal1 .[1]

x. Therefore, Y is unified with the value c .[1]
xi. Because Y has the value c , when solve2 attempts to execute q(X, Y) , the

second clause of q/2 is unified, and not the first, as above.[1]
xii. So the first answer returned is T=c .[1]

IS53020A (CIS335) 2006 6 TURN OVER

4. This question is about Prolog program syntax and execution.

(a) Write down the syntactic categories of the underlined parts of the following items. For
example, inp(X) , X is a “variable”. Part (iii) has three possible answers: give all of
them.

i. p(C, D) :- q(C,E), w(E,D)). [1]

Answer: Argument separator (not And).

ii. X is A + 1 [1]

Answer: Term.

iii. p([x,y,z]). [3]

Answer: Term, List or Argument.

(b) The following Prolog program is intended to be queried with a fully instantiated list of
numbers as its first argument and an uninstantiated variable as its second; it is not intended
to work in any other mode. Study and understand the program, and then answer the
questions below.

t(List, Answer) :-
s(List, null, Answer).

s([], Answer, Answer).
s([Head|Tail], T, Answer) :-

p(Head, T, S),
s(Tail, S, Answer).

p(N, null, t(N, null, null)).
p(N, t(M, T1, T2), t(M, T3, T2)) :-

N =< M,
p(N, T1, T3).

p(N, t(M, T1, T2), t(M, T1, T3)) :-
N > M,
p(N, T2, T3).

i. What is the name of the special technique applied in the second argument of predicate
s/3 ? [1]

Answer: Argument 2 is an accumulator argument.

ii. What is the function of this argument in this program, in particular in relation to
argument 3? [4]

Answer: It accumulates the answer as the program progresses, and eventually returns
it in argument 3, when all the input data is used up.

iii. Consider the arguments of thep/3 predicate. Given that arguments 1 and 2 are inputs

IS53020A (CIS335) 2006 7 TURN OVER

in this context and argument 3 is an output, describe what data and data structures are
expected for each. (Hint: you may find it helpful to draw the structure that each clause
of p/2 produces.) [6]

Answer: Argument 1 is a number [1]; Arguments 2 and 3 are binary [1] tree structures
[1], with a number associated with each node [1]; the constructors of the tree are
null/0 , to end a branch [1], and t/3 to create a node [1].

iv. Explain the function ofp/3 . [3]

Answer: p/3 inserts [1] a number into a tree of numbers [1] in such a way that the
numbers in the tree are ordered increasing left to right [1].

v. Explain the function ofs/3 with respect top/3 and the input data given in the body
of t/2 . (There is no need to explain the operation ofp/3 again.) [6]

Answer: s/3 takes each [1] element of the list given as its first argument [1], and
adds it, using p/3 , to the tree [1], initially null [1], given as its second argument
[1]. When the end of the list is reached, the resulting tree is returned in argument 3
[1].

IS53020A (CIS335) 2006 8 TURN OVER

5. This question is about cut and Prolog execution.

Compare the following two versions of apartition/4 predicate, both of which contain
Prolog cuts. Both versions take a number as their first argument, a list of numbers as their
second argument, and return lists of numbers as their third and fourth arguments. Both versions
are designed to be used with arguments 1 and 2 as input and arguments 3 and 4 as output. Study
the two version of the predicate, deduce its function and answer the questions below.

% VERSION 1

partition(, [], [], []).
partition(N, [H|T], [H|T1], T2) :-

H =< N,
!, % Cut 1
partition(N, T, T1, T2).

partition(N, [H|T], T1, [H|T2]) :-
H > N,
!, % Cut 2
partition(N, T, T1, T2).

% VERSION 2

partition(, [], [], []).
partition(N, [H|T], [H|T1], T2) :-

H =< N,
!, % Cut 3
partition(N, T, T1, T2).

partition(N, [H|T], T1, [H|T2]) :-
!, % Cut 4
partition(N, T, T1, T2).

(a) What is the colour of each cut? [4]

Answer: 1: Green; 2: Green; 3: Red; 4: Green.

(b) Describe in detail the operation of version 1 when applied to the following query, showing
variable unifications at each step, and explicitly including any backtracking behaviour:

[13]

partition(2, [1,3], Low, High).

Answer:

First, clause 2 unifies, with
{N=2, H=1, T=[3], [1|T1]=Low, T2=High } [1].

H =< Nsucceeds [1], so commit to this clause (!) [1], and execute
partition(2, [3], T1, T2) [1].

Clause 2 unifies, giving
{N=2, H=1, T=[3], [1|T1]=Low, T2=High, H’=3, T’=[],

[3|T1’]=T1, T2’=T2 } [1].

IS53020A (CIS335) 2006 9 TURN OVER

However, H’ =< N fails, so this unification is undone [1]. Clause 3 then unifies, giving
{N=2, H=1, T=[3], [1|T1]=Low, T2=High, H’=3, T’=[],

T1’=T1, [3|T2’]=T2 } [1].
H’ > N succeeds [1], and we commit (!) to the clause [1]. We now have to execute

partition(3, [], T1’, T2’) [1].
This goal will unify with only the first clause, giving the unifier

{N=2, H=1, T=[3], [1|T1]=Low, T2=High, H’=3, T’=[],
T1’=T1, [3|T2’]=T2, []=T1’, []=T2’ } [1],

which terminates the execution, with the final values
{ Low=[1], High=[3] } [1].

No other backtracking is possible [1].

(c) Now consider version 2. Explain what advantages and/or disadvantages version 2 has over
version 1, in terms of execution. [2]

Answer: Version 2 is marginally faster than Version 1, because it uses mutual exclusivity
between clauses 2 and 3 to avoid the need to test H>N.

(d) Now consider removing the cuts from both versions, as follows.

% VERSION 1 (no cuts)

partition(, [], [], []).
partition(N, [H|T], [H|T1], T2) :-

H =< N,
partition(N, T, T1, T2).

partition(N, [H|T], T1, [H|T2]) :-
H > N,
partition(N, T, T1, T2).

% VERSION 2 (no cuts)

partition(, [], [], []).
partition(N, [H|T], [H|T1], T2) :-

H =< N,
partition(N, T, T1, T2).

partition(N, [H|T], T1, [H|T2]) :-
partition(N, T, T1, T2).

What correct and incorrect answer(s) could arise, in either no-cuts version of the predicate,
given the following query? [6]

partition(4, [1,7,3,2], Low, High), Low = [,].

Answer: In version 1, no answers at all can arise [1], because the correct answer is pre-
vented by the unification of Low with a list of 2 elements [1]. In version 2, the query will
not give the correct answer [1], for the same reason, but will give three incorrect answers:

Low=[1,3], High=[7,2] [1]
Low=[1,2], High=[7,3] [1]

IS53020A (CIS335) 2006 10 TURN OVER

Low=[2,3], High=[1,7] [1]

IS53020A (CIS335) 2006 11 LAST PAGE

