
CIS324 2005 TURN OVER 1

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2005

COMPUTING AND INFORMATION SYSTEMS

IS53011A (CIS324) Language Design and Implementation

Duration: 2 hours 15 minutes

Date and time:

• Full marks will be awarded for complete answers to THREE questions. Do not attempt more than

THREE questions on this paper. Although each question carries 25 marks, and therefore the result
from three questions sums up to 75 marks, the final result will be additionally scaled to 100.

• Electronic calculators are not allowed.

THIS EXAMINATION PAPER MUST NOT BE

REMOVED FROM THE EXAMINATION ROOM

CIS324 2005 TURN OVER 2

Question 1.

a) Enumerate the main phases and the additional activities according to which programming
 language compilers operate. [5]

b) Let the following ambiguous grammar for expressions be given:

S → E
E → E + E | E - E | N
N → 1 | 2 | 3

 i) Develop two different parse trees for the expression: 1 - 2 + 3. [6]

 ii) Show the formula for the interpretation of this expression from each tree using
 parentheses to indicate the order of execution of the operands. [2]

 iii) Convert the above grammar into two different unambiguous grammars from which
 these parse trees can be derived. [4]

c) Consider the following grammar for expressions with balanced brackets:

S → AaBb
A → Ab | b
B → aB | a

 Demonstrate which of the following sentences are in the language generated by this
 grammar using leftmost derivations:

 i) bbbab [4]

 ii) bbaab [4]

CIS324 2005 TURN OVER 3

Question 2.

a) Define the notion of a nondeterministic finite state automaton (NFA) and its components. [5]

b) Using Thompson’s construction algorithm, build a nondeterministic finite-state
 automaton (NFA) for the following regular expression: (a | b)b* . [6]

c) Transform the NFA for the expression (a | b)b* into a deterministic finite-state
 automaton (DFA) with the subset construction algorithm:

 i) Compute the ∈-closure and move functions. [9]

 ii) Construct the transition table for the DFA. [5]

CIS324 2005 TURN OVER 4

Question 3.

Interpret the performance of the nonrecursive predictive parsing algorithm to determine whether
the string b id := (c+d) e is correct according to the following context-free grammar:

S → bSe | A
A → id E
E → := TE | ∈
T → (T+T) | c | d

and its parsing table:

 id c d b e + := () $
S S→A S→bSe
A A→id E
E E→∈ E→:=TE
T T→c T→d T→(T+T)

 At each algorithmic step show the stack, the input and the output. [25]

CIS324 2005 TURN OVER 5

Question 4.

a) Which are the two steps for building simple LR (SLR) parsing tables for
 bottom-up syntax analysis? [4]

b) Suppose we have the following augmented grammar:

S′ → S
S → Sc | SA | A
A → aSb | ab

 i) Construct the canonical LR(0) collection of items from this grammar. [15]

 ii) Develop the DFA whose states are these sets of valid items. [6]

CIS324 2005 TURN OVER 6

Question 5.

a) Give the five most commonly used three-address code statements. Explain each
 component in them. [10]

b) Generate three-address intermediate code for the following source program fragment using
 a symbol table s, arithmetic and jump statements. [15]

 int i, x, z;
 int y[5];

 i = 0;
 x = 1;
 z = 5;

 while (i < z)
 {
 y[i] = x + i;
 if (y[i] >= z-1)
 y[i] = 0;
 ++i;
 }

CIS324 2005 TURN OVER 7

UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B.Sc. Examination 2004

COMPUTING AND INFORMATION SYSTEMS

IS53011A (CIS324) Language Design and Implementation

Duration: 2 hours 15 minutes

Date and time:

• Full marks will be awarded for complete answers to THREE questions. Do not attempt more than

THREE questions on this paper. Although each question carries 25 marks, and therefore the result
from three questions sums up to 75 marks, the final result will be additionally scaled to 100.

• Electronic calculators are not allowed.

THIS EXAMINATION PAPER MUST NOT BE

REMOVED FROM THE EXAMINATION ROOM

CIS324 2005 TURN OVER 8

 Solutions CIS324
Question 1.

a) Enumerate the main phases and the additional activities according to which programming
 language compilers operate. [5]

Programming language compilers operate in the following phases: lexical analysis, syntax analysis,
intermediate code generation, code optimisation, and code generation.
The two additional activities are: symbol table management, and error handling.

b) Let the following ambiguous grammar for expressions be given:

S → E
E → E + E | E - E | N
N → 1 | 2 | 3

 i) Develop two different parse trees for the expression: 1 - 2 + 3. [6]

E

E

E

N E E

N N

E

E

N

N 3

E

E

N

E

S S

+

1 2

-

-

1

2

+

3
 ii) Show the formula for the interpretation of this expression from each tree using

 paremtheses to indicate the order of execution of the operands. [2]

 (1 - 2) + 3 and 1 – (2 + 3)

 iii) Convert the above grammar into two different unambiguous grammars from which

 these parse trees can be derived. [4]

S → E S → E
E → E + T | E - T | T E → T + E | T - E | T
T → N T → N
N → 1 | 2 | 3 N → 1 | 2 | 3

c) Consider the following grammar for expressions with balanced brackets:

S → AaBb
A → Ab | b
B → aB | a

 Demonstrate which of the following sentences are in the language generated by this grammar
 using leftmost derivations:

 i) bbbab. [4]

S �lm AaBb �lm AbaBb �lm AbbaBb �lm bbbaBb , therefore NO

 ii) bbaab. [4]

S �lm AaBb �lm AbaBb �lm bbaBb �lm bbbaab , therefore YES

CIS324 2005 TURN OVER 9

Question 2.

a) Define the notion of a nondeterministic finite state automaton (NFA) and its components. [5]

A nondeterministic finite state automaton (NFA) is a mathematical model describing a recognizer
of a programming language. An NFA implements a diagram of transitions from state-symbol pairs to
sets of states, the transitions being carried out on seeing input symbols from the chosen alphabet.
The NFA components are: a set of states S, input alphabet: �, transition function move that maps
pairs state-symbol to sets-of-states, input state S0 and final states F.

b) Using Thompson’s construction algorithm, build a nondeterministic finite-state
 automaton (NFA) for the following regular expression: (a | b)b* . [6]

1

2 3

6

a

∈b

∈

∈

90

4 5

∈
∈∈

start end

∈

∈
7 8

b

∈

c) Transform the NFA for the expression (a | b)b* into a deterministic finite-state
 automaton (DFA) with the subset construction algorithm:

i) Compute the ∈-closure and move functions. [9]

∈-closure({ 0}) = { 1, 2, 4 } = A

∈-closure(move(A, a)) = ∈-closure(move({ 1, 2, 4 } , a)) = { 3, 6, 7, 9 } = B

∈-closure(move(A, b)) = ∈-closure(move({ 1, 2, 4 } , b)) = { 5, 6, 7, 9 } = C

∈-closure(move(B, a)) = ∈-closure(move({ 3, 6, 7, 9 } , a)) = { }

∈-closure(move(B, b)) = ∈-closure(move({ 3, 6, 7, 9 } , b)) = { 7, 8, 9 } = D

∈-closure(move(C, a)) = ∈-closure(move({ 5, 6, 7, 9 } , a)) = { }

∈-closure(move(C, b)) = ∈-closure(move({ 5, 6, 7, 9 } , b)) = { 7, 8, 9 } = D

∈-closure(move(D, a)) = ∈-closure(move({ 7, 8, 9 } , a)) = { }

∈-closure(move(D, b)) = ∈-closure(move({ 7, 8, 9 } , a)) = { 7, 8, 9 } = D

 ii) Construct the transition table for the DFA. [5]

state a b

A B C

B { } D

C { } D

D { } D

CIS324 2005 TURN OVER 10

Question 3.

Interpret the performance of the nonrecursive predictive parsing algorithm to determine whether
 the string b id := (c+d) e is correct according to the following context-free grammar:

S → bSe | A
A → id E
E → := TE | ∈
T → (T+T) | c | d

 and its parsing table:

 id c d b e + := () $
S S→A S→bSe
A A→id E
E E→∈ E→:=TE
T T→c T→d T→(T+T)

 At each algorithmic step show the stack, the input and the output. [25]

Stack Input Output
$S b id := (c+d) e $

$eSb b id := (c+d) e $ S → bSe

$eS id := (c+d) e $

$eA id := (c+d) e $ S → A

$eEid id := (c+d) e $ A → id E

$eE := (c+d) e $

$eET:= := (c+d) e $ E → := TE

$eET (c+d) e $

$eE)T+T((c+d) e $ T → (T+T)

$eE)T+T c+d) e $

$eE)T+c c+d) e $ T → c

$eE)T+ +d) e $

$eE)T d) e $

$eE)d d) e $ T → d

$eE)) e $

$eE e $

$e e $ E → ∈

CIS324 2005 TURN OVER 11

Question 4.

a) Which are the two steps for building simple LR (SLR) parsing tables for
 bottom-up syntax analysis? [4]

The two steps of the SLR method for building parsing tables are:
- construction of a DFA to recognize viable prefixes from the given grammar (using sets-of-items);
- determination of the parsing action and goto entries of the parsing table using this DFA..

b) Suppose we have the following augmented grammar:

S′ → S
S → Sc | SA | A
A → aSb | ab

i) Construct the canonical LR(0) collection of items from this grammar. [15]

I0: S′ → •S I1: S → S•c I2: S → A• I3: A → a•Sb
 S → •Sc S → S•A A → a•b
 S → •SA A → •aSb S → •Sc
 S → •A A → • ab S → •SA
 A → •aSb S → •A
 A → •ab A → •aSb
 A → •ab

I4: S → Sc• I5: S → SA• I6: A → aS•b I7: A → ab•
 S → S•A
 A → •aSb I8: A → aSb•
 A → •ab

ii) Develop the DFA whose states are these sets of valid items. [6]

I1S

I0 I2

c

A

S
I3

I4

I5

I6 I8

I7

A

b

b
a

a

A
a

CIS324 2005 TURN OVER 12

Question 5.

a) Give the five most commonly used three-address code statements. Explain each
 component in them. [10]

- assignment statements of the kind: x := y op z, including copy statements: x := y;
- unconditional jumps: goto L where L is the label of the next instruction;
- conditional jumps: if x relop y goto L where relop is relation operator;
- procedure calls: param x1, param x2,… call p,n and return y, where p denotes
 a procedure p(x1, x2,…, xn) with n arguments provided in advance;
- indexed assignments: x := y[i], and x[i] := y, where i is the index that
 points to a location at i points after the beginning of the array x.

b) Generate three-address intermediate code for the following source program fragment using
 a symbol table s, arithmetic and jump statements. [15]
 int i, x, z;
 int y[5];

 i = 0;
 x = 1;

 z = 5;

 while (i < z)
 {
 y[i] = x + i;
 if (y[i] >= z-1)
 y[i] = 0;
 ++i;
 }

 (1) s := mktable(nil)
 (2) enter(s, i, int, 4)
 (3) enter(s, x, int, 4)
 (4) enter(s, z, int, 4)
 (5) enter(s, y, array, 5*4)
 (6) i := 0
 (7) x := 1
 (8) z := 5
 (9) if i >= z goto (19)
 (10) t1 := 4 * i
 (11) t2 := x + i
 (12) y[t1] := t2
 (13) t3 := y[t1]
 (14) t4 := z - 1
 (15) if t3 <= t4 goto (17)
 (16) y[t1] := 0
 (17) i := i + 1
 (18) goto (9)
 (19) end

