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Question 1.   

a) Enumerate the main phases and the additional activities according to which programming  
    language compilers operate. [5] 
 

b) Let the following ambiguous grammar for expressions be given: 

S  →  E 
E  →  E + E  |  E - E  |  N 
N →  1  |  2  | 3  

      i) Develop two different parse trees for the expression: 1 - 2 + 3. [6] 

      ii) Show the formula for the interpretation of this expression from each tree using 
           parentheses to indicate the order of execution of the operands. [2] 

      iii) Convert the above grammar into two different unambiguous grammars from which 
            these parse trees can be derived. [4] 
 

c) Consider the following grammar for expressions with balanced brackets: 

S  →  AaBb 
A  →  Ab  |  b 
B  →  aB  |  a  

    Demonstrate which of the following sentences are in the language generated by this  
    grammar using leftmost derivations: 

    i) bbbab  [4] 

    ii) bbaab [4] 
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Question 2.   
 
a) Define the notion of a nondeterministic finite state automaton (NFA) and its components. [5]  
 
b) Using Thompson’s construction algorithm, build a nondeterministic finite-state  
     automaton (NFA) for the following regular expression:  ( a | b )b* . [6] 
 

c) Transform the NFA for the expression  ( a | b )b*   into a deterministic finite-state  
     automaton (DFA) with the subset construction algorithm: 

      i) Compute the ∈-closure and move functions. [9] 

      ii) Construct the transition table for the DFA. [5] 
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Question 3.  
 
Interpret the performance of the nonrecursive predictive parsing algorithm to determine whether 
the string  b id := ( c+d ) e  is correct according to the following context-free grammar: 

S  →  bSe  |  A 
A  →  id E  
E  →  := TE  |  ∈ 
T  →  ( T+T ) |  c  |  d 

and its parsing table: 

 id c d b e + := ( ) $ 
S S→A   S→bSe       
A A→id E          
E     E→∈  E→:=TE    
T  T→c T→d     T→(T+T)   
 

     At each algorithmic step show the stack, the input and the output. [25] 
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Question 4.  
 

a) Which are the two steps for building simple LR (SLR) parsing tables for  
     bottom-up syntax analysis? [4] 
 

b) Suppose we have the following augmented grammar: 

S′ →  S 
S  →  Sc | SA | A 
A  →  aSb | ab 

      i) Construct the canonical LR(0) collection of items from this grammar. [15] 

      ii) Develop the DFA whose states are these sets of valid items. [6] 
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Question 5.  
 
a) Give the five most commonly used three-address code statements. Explain each  
     component in them. [10] 
 

b) Generate three-address intermediate code for the following source program fragment using 
     a symbol table s, arithmetic and jump statements. [15]  
 

 int i, x, z; 
 int y[ 5 ]; 
 
 i = 0; 
 x = 1; 
 z = 5; 
 
 while ( i < z )  
 { 
  y[ i ] = x + i; 
  if ( y[ i ] >= z-1 ) 
   y[ i ] = 0; 
  ++i; 
 } 
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                             Solutions CIS324 
Question 1.  

a) Enumerate the main phases and the additional activities according to which programming  
    language compilers operate. [5] 

Programming language compilers operate in the following phases: lexical analysis, syntax analysis, 
intermediate code generation, code optimisation, and code generation. 
The two additional activities are: symbol table management, and error handling.  
 
b) Let the following ambiguous grammar for expressions be given: 

S  →  E 
E  →  E + E  |  E - E  |  N 
N →  1  |  2  | 3  

    i) Develop two different parse trees for the expression: 1 - 2 + 3. [6] 
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    ii) Show the formula for the interpretation of this expression from each tree using 

         paremtheses to indicate the order of execution of the operands. [2] 

          ( 1 - 2 ) + 3 and 1 – ( 2 + 3 ) 
  

    iii) Convert the above grammar into two different unambiguous grammars from which 

           these parse trees can be derived. [4] 

S  →  E     S  →  E 
E  →  E + T  |  E - T  |  T   E  →  T + E  |  T - E  |  T 
T  →  N     T  →  N 
N →  1  |  2  | 3     N →  1  |  2  | 3 

 
c) Consider the following grammar for expressions with balanced brackets: 

S  →  AaBb 
A  →  Ab  |  b 
B  →  aB  |  a  

    Demonstrate which of the following sentences are in the language generated by this grammar 
    using leftmost derivations: 

    i) bbbab. [4] 

S  �lm  AaBb  �lm  AbaBb  �lm  AbbaBb  �lm  bbbaBb  , therefore  NO 

    ii) bbaab. [4] 

S  �lm  AaBb  �lm  AbaBb  �lm  bbaBb  �lm  bbbaab  , therefore  YES 
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Question 2. 
 

a) Define the notion of a nondeterministic finite state automaton (NFA) and its components. [5]  

A nondeterministic finite state automaton (NFA) is a mathematical model describing a recognizer 
of a programming language. An NFA implements a diagram of transitions from state-symbol pairs to 
sets of states, the transitions being carried out on seeing input symbols from the chosen alphabet.  
The NFA components are: a set of states S, input alphabet: �, transition function move that maps  
pairs state-symbol to sets-of-states, input state S0 and final states F. 

 

b) Using Thompson’s construction algorithm, build a nondeterministic finite-state  
     automaton (NFA) for the following regular expression:  ( a | b )b* . [6] 
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c) Transform the NFA for the expression  ( a | b )b*   into a deterministic finite-state  
     automaton (DFA) with the subset construction algorithm: 

i) Compute the ∈-closure and move functions. [9] 

∈-closure({ 0} ) = {  1, 2, 4 }  = A 

∈-closure( move( A, a )) = ∈-closure( move({ 1, 2, 4 } , a )) = {  3, 6, 7, 9 }  = B 

∈-closure( move( A, b )) = ∈-closure( move({ 1, 2, 4 } , b )) = {  5, 6, 7, 9 }  = C 

∈-closure( move( B, a )) = ∈-closure( move({  3, 6, 7, 9 } , a )) = { }  

∈-closure( move( B, b )) = ∈-closure( move({  3, 6, 7, 9 } , b )) = {  7, 8, 9 }  = D 

∈-closure( move( C, a )) = ∈-closure( move({  5, 6, 7, 9 } , a  )) = { }   

∈-closure( move( C, b )) = ∈-closure( move({  5, 6, 7, 9 } , b  )) = {  7, 8, 9 }  = D 

∈-closure( move( D, a )) = ∈-closure( move({  7, 8, 9 } , a  )) = { }  

∈-closure( move( D, b )) = ∈-closure( move({  7, 8, 9 } , a  )) = {  7, 8, 9 }  = D 

 
    ii) Construct the transition table for the DFA. [5] 

state a b 

A B C 

B { }  D 

C { }  D 

D { }  D 
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Question 3. 
 

Interpret the performance of the nonrecursive predictive parsing algorithm to determine whether 
     the string  b id := ( c+d ) e  is correct according to the following context-free grammar: 

S  →  bSe  |  A 
A  →  id E  
E  →  := TE  |  ∈ 
T  →  ( T+T ) |  c  |  d 

     and its parsing table: 

 id c d b e + := ( ) $ 
S S→A   S→bSe       
A A→id E          
E     E→∈  E→:=TE    
T  T→c T→d     T→(T+T)   

     At each algorithmic step show the stack, the input and the output. [25] 

Stack Input Output 
$S b id := ( c+d ) e $  

$eSb b id := ( c+d ) e $ S  →  bSe  

$eS id := ( c+d ) e $  

$eA id := ( c+d ) e $ S  →  A 

$eEid id := ( c+d ) e $ A  →  id E 

$eE := ( c+d ) e $  

$eET:= := ( c+d ) e $ E  →  := TE 

$eET ( c+d ) e $  

$eE)T+T( ( c+d ) e $ T  →  ( T+T ) 

$eE)T+T c+d ) e $  

$eE)T+c c+d ) e $ T  →  c 

$eE)T+ +d ) e $  

$eE)T d ) e $  

$eE)d d ) e $ T  →  d 

$eE) ) e $  

$eE e $  

$e e $ E  →  ∈ 



CIS324 2005  TURN OVER 11 

Question 4. 
 

a) Which are the two steps for building simple LR (SLR) parsing tables for  
     bottom-up syntax analysis? [4] 

The two steps of the SLR method for building parsing tables are: 
- construction of a DFA to recognize viable prefixes from the given grammar (using sets-of-items); 
- determination of the parsing action and goto entries of the parsing table using this DFA.. 
 
b) Suppose we have the following augmented grammar: 

S′  →  S 
S  →  Sc   |  SA  |  A 
A  →  aSb   |  ab 

i) Construct the canonical LR(0) collection of items from this grammar. [15] 

I0: S′  → •S  I1: S  → S•c  I2: S  → A• I3: A  → a•Sb 
 S  →  •Sc   S  → S•A     A  → a•b 
 S  →  •SA   A  → •aSb     S  →  •Sc 
 S  → •A   A  → • ab     S  →  •SA 
 A  → •aSb        S  → •A 
 A  → •ab        A  → •aSb 
         A  → •ab 

I4: S  → Sc•  I5: S  → SA•  I6: A  → aS•b I7: A  → ab• 
        S  → S•A 
        A  → •aSb I8: A  → aSb• 
        A  → •ab 
 

ii) Develop the DFA whose states are these sets of valid items. [6] 
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Question 5.  
 

a) Give the five most commonly used three-address code statements. Explain each  
     component in them. [10] 

- assignment statements of the kind: x := y op z, including copy statements: x := y; 
- unconditional jumps: goto L where L is the label of the next instruction; 
- conditional jumps: if x relop y goto L where relop is relation operator; 
- procedure calls: param x1, param x2,… call p,n and return y, where p denotes 
                               a procedure p(x1, x2,…, xn) with n arguments provided in advance; 
- indexed assignments: x := y[ i ], and x[ i ] := y, where i is the index that 
                                       points to a location at i points after the beginning of the array x. 
 
 

b) Generate three-address intermediate code for the following source program fragment using 
     a symbol table s, arithmetic and jump statements. [15]  
 int i, x, z; 
 int y[ 5 ]; 
 

 i = 0; 
 x = 1; 

 z = 5; 

 

 while ( i < z )  
 { 
  y[ i ] = x + i; 
  if ( y[ i ] >= z-1 ) 
   y[ i ] = 0; 
  ++i; 
 } 
 
 ( 1 ) s := mktable( nil ) 
 ( 2 ) enter( s, i, int, 4 )  
 ( 3 ) enter( s, x, int, 4 ) 
 ( 4 ) enter( s, z, int, 4 ) 
 ( 5 ) enter( s, y, array, 5*4 ) 
 ( 6 ) i := 0 
 ( 7 ) x := 1 
 ( 8 ) z := 5 
 ( 9 ) if i >= z goto (19) 
 ( 10 ) t1 := 4 * i 
 ( 11 ) t2 := x + i 
 ( 12 ) y[ t1 ] := t2 
 ( 13 ) t3 := y[ t1 ] 
 ( 14 ) t4 := z - 1 
 ( 15 ) if t3 <= t4 goto (17) 
 ( 16 ) y[ t1 ] := 0 
 ( 17 ) i := i + 1 
 ( 18 ) goto (9) 
 ( 19 ) end 


