
UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2004

COMPUTING AND INFORMATION SYSTEMS

IS53010A(CIS325) Data Compression

Duration: 2 hours and 15 minutes

Date and time: May 2004

Answer THREE questions only.
Full marks will be awarded for complete answers to THREE questions.
There are 75 marks available on this paper.
Electronic calculators may be used. The make and model should be specified on

the script and the calculator must not be programmed prior to the examination.

THIS EXAMINATION PAPER MUST NOT BE
REMOVED FROM THE EXAMINATION ROOM

IS53010A(CIS325) 2004 1 TURN OVER



Question 1

(a) Determine whether the following codes for the alphabet {a, b, c, d} are uniquely
decodable. Give your reasons for each case. [8]

(i) {1, 011, 000, 010}
(ii) {1, 10, 101, 0101}
(iii) {0, 01, 011, 0111}
(iv) {0, 001, 10, 011}

(b) Consider a text model for a black-white source file. Under what probability
distribution condition does a static Huffman encoding algorithm achieve the
best performance? Under what condition on the source does the algorithm
perform the worst? Give your reasons. [7]

(c) Outline a simple version of the adaptive Huffman encoding algorithm. [5]

(d) Illustrate how adaptive Huffman encoding works on a source of text CAAABB.
[5]

Hint:

(i) You may demonstrate step by step the progress of running the Adaptive
Huffman encoding algorithm in terms of the input, output, alphabet and
the tree structure.

(ii) Add sufficient comments in your algorithm if it is different from the one
discussed in lecture.

IS53010A(CIS325) 2004 2 TURN OVER



Question 2

(a) Consider part of a grayscale image with 16 shades of gray that is represented
by the array A below:

A: 0011 1000 1000 0010
1100 1000 1100 0110
1000 1100 1001 1001

Demonstrate how the image can be represented by several bitplanes (bi-level
images) [4]

(b) Explain, with the aid of an example, why a Huffman code is in general not
optimal unless the probability of every symbol in the source alphabet is a
negative power of 2. [5]

(c) One way to improve the efficiency of Huffman coding is to maintain two sorted
lists during the encoding process. Using this approach, derive a canonical
minimum variance Huffman code for the alphabet {A,B,C,D,E,F} with the
probabilities (in %) 34,25,13,12,9,7 respectively. [8]

(d) Explain, with the aid of an example, each of the following terms: [8]

(i) fixed-to-variable model

(ii) gray-scale image

IS53010A(CIS325) 2004 3 TURN OVER



Question 3

(a) Explain what is used to represent the so-called colour depth in a common RGB
colour model. What is the value of the colour depth in a representation where
8 bits are assigned to every pixel? [4]

(b) Comment on the truth of the following statement describing the absolute limit
on lossless compression. [4]

“No algorithm can compress even 1% of all files, even by one byte.”

(c) Explain briefly what is meant by Canonical and Minimum-variance Huffman
coding, and why it is possible to derive two different Huffman codes for the
same probability distribution of an alphabet. [4]

(d) Describe briefly, with the aid of an example, how Shannon-Fano encoding dif-
fers from static Huffman encoding. [5]

Hint: You may give an example by deriving a code for {A,B,C,D} with prob-
ability distribution 0.5, 0.3, 0.1, 0.1 using the two algorithms, and show the
difference.

(e) A binary tree (0-1 tree) can be used to represent a code containing a few
codewords of variable length. Consider each of the four codes ((i)-(iv) below)
for alphabet {A,B,C,D} and draw the binary tree for each code.

(i) {000, 001, 110, 111}
(ii) {110,111,0,1}
(iii) {0000,0001,1,001}
(iv) {0001,0000,0001,1}

For each tree drawn, comment on whether the code being represented by the
binary tree is a prefix code and give your reasons. [8]

IS53010A(CIS325) 2004 4 TURN OVER



Question 4

(a) Explain the meaning of the following terms: [8]

(i) rate-distortion problem

(ii) entropy

(iii) prefix codes

(iv) motion prediction.

(b) Given an alphabet of four symbols {A,B,C,D}, discuss the possibility of a
uniquely decodable code in which the codeword for A has length 1, that for B
has length 2 and for both C and D have length 3. Justify your conclusions. [4]

(c) Derive the output of the HDC algorithm on the source sequence below. Ex-
plain the meaning of each control symbol that you use. Finally, describe briefly
a data structure(s) and algorithm(s) that can be used in solving counting sub-
problems in the HDC algorithm. [5]

TTUÃÃÃÃÃÃÃÃÃKÃÃRR33333333333333ÃÃPPPEE

Hint: You may simply describe the data structure(s) and algorithm(s) that you
have used in your Lab Exercise when implementing the HDC algorithm.

(d) Explain the concept of bitmapped images and vector graphics. What are the
differences between vector and bitmapped graphics in terms of requirements to
the computer storage capacity, and the size of the image files. [8]

IS53010A(CIS325) 2004 5 TURN OVER



Question 5

(a) It has been suggested that the unique decodability is not a problem for any
fixed length code. Explain why this is so with the aid of an example. [4]

(b) Describe the main idea of predictive encoding. Suppose the matrix below rep-
resents the pixel values (in decimal) of part of a grayscale image. Let the
prediction be that each pixel is of the same value as the one to its left. Il-
lustrate step by step how predictive encoding may be applied to the array.

[6]

1 1 1 1
5 1 1 1
5 5 5 5
7 9 4 5

(c) Demonstrate step by step how the Basic LZW encoding and decoding algorithms
maintain the same version of a dictionary without ever transmitting it between
the compression and the decompression end, using a small source string BBGBGH
as an example. [15]

The LZW encoding and decoding algorithms are given below.

(i) Encoding

1. word=‘’;

2. while not end_of_file

x=read_next_character;

if word+x is in the dictionary

word=word+x

else

output the dictionary index for word;

add word+x to the dictionary;

word=x;

3. output the dictionary number for word;

(ii) Decoding

1. read a token x from compressed file;

2. look up dictionary for element at x;

output element

word=element;

3. while not end_of_compressed_file do

read x;

look up dictionary for element at x;

if there is no entry yet for index x

then element=word+first_char_of_word;

output element;

add word+first_char_of_element to the dictionary;

word=element;

4. end

IS53010A(CIS325) 2004 6 END OF EXAMINATION


