UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2004

COMPUTING AND INFORMATION SYSTEMS

IS51009A (CIS110)
 Introduction to Computing and the Internet

Duration: 3 hours
Date and time:

This paper is in two parts, Part A and Part B. There are a total of three questions in each part. You should answer two questions from Part A and two questions from Part B. Your answers to Part A and Part B should be written in separate answer books.

Full marks will be awarded for complete answers to a total of four questions, two from Part A and two from Part B. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.
Electronic calculators must not be programmed prior to the examination. Calculators which display graphics, text or algebraic equations are not allowed.

Part A: answer TWO questions from this Part

Question 1

(a) (i) Calculate the decimal value of the following binary numbers in two's complement notation:

1) 10000011
2) 00001111
(ii) State the advantages of two's complement notation.
(b) A 9-bit processor has instructions that consist of 3-bit op-codes with a 6-bit operand, as described in the following table. (The operand "dddddd" stands for any sequence of 6-bits which is to be interpreted as data. The operand "aaaaaa" stands for any sequence of 6-bits which is to be interpreted as an address.)

Opcode	Operand	Description
001	d d d d d d	Load the accumulator with the data 000dddddd
010	a a a a a a	Add to the accumulator the data at the address aaaaa
100	a a a a a a a	Write the content of the accumulator to the address aaaaaa
110	a a a a a a	Jump to the address aaaaaaa
111	a a a a a a	Halt

Given the following program which starts at address 000000, describe what the program does, step by step.

Address	Instruction
000000	001010000
000001	010100000
000010	100100001
000011	111001000
$:$	\vdots
\vdots	$:$
100000	00000001
100001	00011111

(c) The following bit pattern represents a single precision floating-point number with an 8 -bit exponent (with a bias of 127) and a normalised 23 bit significand conforming to IEEE 754.

Sign	Exponent	Significand
1	10000000	00000000000000000000000

Showing all your working, calculate which number this represents in base 10 .

Question 2

(a) (i) How does a cell in Main Memory store information?
(ii) How is information read from a cell in Main Memory?
(b) Suppose that a computer has 600 cells. How many address lines does this computer need? Explain your answer.
(c) (i) Explain the concept of 'fetch-execute cycle'.
(ii) Explain the role that the program counter (PC) plays in such cycles.
(d) Draw a diagram to illustrate the connection between the Central Processing Unit, the Main Memory, and the Input/Output Devices.
(e) What is a 'bus' in computing?

Question 3

(a) What is an operating system?
(b) Suppose that the CPU is executing a process when an interrupt occurs. How does the operating system deals with this interrupt?
(c) (i) What is fixed-sized partitioning?
(ii) Use an example to explain the problems of fixed-sized partitioning.
(d) What is 'pipelining'? Describe its disadvantages.

