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Question 1 Suppose that X71,..., X, is a random sample of n independent obser-
vations from a distribution with p.d.f.

flz]0)= %e_$2/20, x> 0.

(a) Determine the Cramer-Rao lower bound (CRLB) for the variance of unbiased
estimators of 6. [10]

(b) Does there exist an unbiased estimator which attains the CRLB? If so, find it. [§]

(c) Now consider the unbiased estimation of v/f. Determine the CRLB, and say
whether or not it can be attained. [7]

Question 2 Let X1,..., X, be a random sample from one of the distributions be-
low.

(a) In which case is the only sufficient statistic the set of order statistics X(y),..., X(n)? [3]

(b) In each of the other cases find a suitable sufficient statistic for 6:

x|9):(1_p)p$_a7$:a7a+]‘7"'7 Hz(p’a)

210) = —L—exp (—55(logz — u)?), 5> 0, 0 = (u,02).

o

[22]

Question 3 The number of beta-particles given off from a piece of radioactive ma-

terial in a one minute interval is Poisson distributed with known mean A, and the

number given off in n disjoint one minute intervals are independent. A machine used

for counting these beta-particles records the value zero with probability § (0 < § < 1)

whatever the number of particles, and accurately records the true number (which

may be zero) with probability (1 — ), independently of other time periods.
Suppose that the recorded values are X1, ..., X,, and 6 is unknown.

(a) Show that the joint mass function of these data is given by
n
fx(x]0) = 0+ (1 —0)e™)™(1 — )" me MrmNE Lz T w,
i=1
where M = m is the number of zeroes amongst the data x = (z1,...,z,). [6]

(b) Hence show that M is a complete and sufficient statistic for 6. [7]
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(c) Hence find a UMVUE of 6, quoting any theorems you may use. [12]

Question 4 (a) State clearly but do not prove the Neyman-Pearson Lemma. [9]

(b) Under what conditions can the test procedure from the above lemma be uni-
formly most powerful (UMP)? [4]

(c) If f(x | 8) = 2%e=%/9 263, show that the UMP test (amongst tests of size o) of
Hy:0=0, versus Hy:0 >0

is to reject Hy if
D @i > EX(in(a)' [12]

Question 5 Let X;; be independent Poisson random variables with means 6;, j =
1,2,...,n,e=1,2,...,p.

(a) Derive the generalized likelihood ratio test statistic for testing
Hy:0,=0y=---=80, versus H; :at least two of the §;, i =1,...,p are different. [17]

(b) Hence show that a test of approximate size « is to reject Hy if

p

1
> Tilog T — Tlog(T/p) > 5 x-1(e),
=1
where T; = 37 zij, i =1,...,p and T'= 3P | T, [8]
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