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Part A: Answer ALL questions

Question 1 The random variable X has a Gamma Ga(a, A) distribution where
a>0,A>0.

(a) Given that the pdf of a Ga(r + «, \) distribution is proper, show that

E[X") = 4l = % (r> —a). 5]

(b) Hence show that the variance of X is given by 0? = «/A\? and that the stan-
dardised coefficient of skewness v; = E[(X — p)3]/0% = 2//a.
(HINT: use the identity E[(X — u)3] = pb — 3uuh + 2u3.)

Question 2 A random sample z1,...,z, with mean Z is observed from the Exz())
distribution.

(a) Show that the likelihood function is given by
L()\) = \"e™ ™2, 2]
(b) Hence show that the MLE of X is A = 1/z, verifying that the likelihood is
indeed maximised.

(c) Hence find the information function I()), and write down a large sample 99%
confidence interval for A in terms of n and Z, stating the theorem you are using.

Question 3 (a) Show that the sampling distribution of the mean of a random
sample from Ez()) is Ga(n,n)).

(b) Hence using the results of Question 1, show that the bias of the MLE A in
Question 2 is A/(n — 1),

(¢) Further show that

o A2n?
Var[A] = .
Question 4 A random sample z1, ..., z, is taken from a Negative Binomial N B(k,p)

distribution, with £ known. A Bayesian analysing these data chooses a Beta prior
distribution for p with parameters o and S.

(a) Show that the posterior distribution for p is also Beta, and find its parameters.

(b) Hence show that the posterior mean is a weighted linear combination of the
prior mean and MLE p = z/(z + k), and find the weight attached to the MLE.
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(c) Show that this weight tends to 1 not only as the sample size n — oo, but also
as k increases, and as the prior parameters both tend to zero. [3]

Question 5 A logarithmic distribution with parameter 8 with p.d.f. given by

fe10)=a®)”,  e=12..,

where a(f) = —1/log(1 — ), 0 < 6 < 1, has mean —al(f):.

(a) Show that the loglikelihood from a random sample zi,...,z, is, up to an
additive constant,
[(0) = nloga(f) +nzlogh. [3]

(b) Hence show that the MLE 6 solves the method of moments equation

a(0)6
T—g U

T =

(c) Hence also show that the information function I(#) is given by

na(6)[1 + 0a(6)]
o1—072 15

1(6) =
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Part B: Answer ONE question only
Question 6 The joint p.d.f. f(z,y) of two random variables X, Y is given by
flz,y) =14+a(l —2z)(1 —2y), 0<z<1l, 0<y<1l, zerootherwise,
where —1 < o < 1.
(a) Show that the joint c.d.f. F(z,y) = Pr[X <z, Y <] is given by
Flz,y)=zyl+a(l—2z)(1-y)], 0<z<1, 0<y<l1 8]
(b) Hence find the marginal c.d.f.s of both X and Y, showing they are both those
of a U(0,1) random variable.
(c) Show that the correlation p of X and Y is given by p = /3.

(d) Find also the conditional p.d.f. of Y given X = z and show that its mean is
pz + (1 - p).

Question 7 Accidents at a busy junction are thought to follow a Poisson process
so that the number of accidents X; in a time period of length ¢; (known) has a
Poisson distribution with mean p; = At; (¢ = 1,...,n), where A > 0 is an unknown
parameter. The parameter \ represents the accident rate to be estimated from the
n non-overlapping periods of observation.

(a) Show that the likelihood function L()) is proportional to e~ Dim ti AL i
(b) Sketch the likelihood function.
(c) Show that the maximum likelihood estimate (MLE) X satisfies

2?21 T4

=Lt
i=1ti

A= (3]

(d) Show that an approximate 95% confidence interval for A is given by the end-
points (3°5; @i £ 1.96/> 71 zi)/ >y ti-
(e) Find additionally the maximised value of the loglikelihood.

(f) The saturated model postulates a different accident rate \;, say for the ith
period (i = 1,...,n) and hence the MLEs are A\; = z;/t;, i = 1,...,n. Find
the maximised value of its loglikelihood and show that the difference is

3 os () s () .
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