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Question 1   (a)  

(i) Let f(t) = t/(1 + t). Show that f(t) is monotone increasing on [0, ∞). Deduce that for all real numbers a 

and b, f(|a + b|) ≤ f(|a| + |b|). Hence or otherwise, prove 

|a + b|/(1 + |a + b|) ≤ |a|/(1 + |a|) + |b|/(1 + |b|). 

[3] 

(ii) Let CN = {(xn)n : xn ∈ C, n ∈ N} be the set of sequences of complex numbers and let d((xn)n, (yn)n) = Σ n 

= 0
∞ |xn – yn|/(2

n(1 + |xn – yn|)). Prove that (CN, d) is a metric space. 

[6] 

 

(b) Suppose that (X, d0) is a compact metric space. 

(i) Prove that  (X, d0) is complete. 

[3] 

(ii) Let (C(X), d) be the metric space of continuous real–valued functions on X, where d(f, g) = sup{| f(x) – 

g(x)| : x ∈ X}. Prove that (C(X), d)  is complete. 

[6] 

 

(c) Let l1 = {(xn)n : xn ∈ C, n ∈ N, and Σ n ∈ N |xn| < ∞}, and let d((xn)n, (yn)n) = Σ n ∈ N |xn – yn|. Let F = {(xn)n  ∈ l1 : {n ∈ N 

: xn ≠ 0} is finite},  i.e. elements of F are convergent complex sequences almost all of whose terms are zero. For each 

n ∈ N, define an element x(n) = (x(n)
k)k ∈ l1 as follows: 

x(n)
k =  1/k2 for k = 1, 2, ..., n, and x(n)

k =  0 for k = n + 1, n + 2, ... .  

Show that the sequence (x(n))n is a Cauchy sequence but does not converge to any point in F. 

[7] 

Question 2   (a) Let (X, d) be a metric space and suppose that f is a function from X into X. 

(i) What does it mean to say that f is a contraction? 

[2] 

(ii) Suppose that X is complete and, for some natural number n, f n is a contraction, where f n is the 

composition f ο f ο ... ο f of f (n times), and f 1 = f. Prove that f has a unique fixed point. 

[4] 
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(b) Let (C[a, b], d) be the metric space of continuous real-valued functions on the closed interval [a, b], where d(f, g) = 

sup{|f(x) – g(x)| : x ∈ [a, b]. Suppose that v(t) is a continuous real–valued function on [a, b] and k(t, y) is a continuous 

real–valued function on the closed triangular region in R2 whose vertices are (a, a), (a, b) and (b, b). Let T : C[a, b] 

→ C[a, b] be the function defined by  

T(g)(t) = ν(t) + ∫ at k(t, y) g(y) dy. 

(i) Show there exists a real number c such that for all t ∈ [a, b]  

|T(g)(t) – T(h)(t))| ≤ c (t – a) d(g, h). 

Deduce that d(T(g), T(h)) ≤ c (b – a) d(g, h). 

[3] 

(ii) Prove by induction on n ∈ N that for all t ∈ [a, b]  

|Tn(g)(t) – Tn(h)(t))| ≤ cn (t – a)n d(g, h) / n!. 

Deduce that d(Tn(g), Tn(h)) ≤ cn (b – a)n d(g, h) / n!. 

[6] 

 

(iii) Hence show that for some natural number n, Tn is a contraction. Deduce that T has a unique fixed point, 

explaining carefully your argument. 

[6] 

(iv) Prove that the Volterra Integral equation ν(t) = g(t) –  ∫ at k(t, y) g(y) dy has a unique solution g(t) ∈ C{a, b]. 

[4] 
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Question 3   (a) 

(i) Suppose that (X, d) is a complete metric space and {Fn : n ∈ N} is a sequence of closed non–empty sets 

in X such that Fn + 1  ⊆ Fn, and F0 is compact. Prove that the intersection ∩ n ∈ N Fn is non–empty. 

[5] 

(ii) Define a Cantor set C as follows: C0 = [0, 1], and for n ∈ N, Cn + 1 is obtained from Cn by dividing Cn 

into five equal closed intervals and deleting the second and fourth of these intervals. (So, e.g. C1 = [0, 

1/5] ∪ [2/5, 3/5] ∪ [4/5, 1].) Let C = ∩ n ∈ N Cn. Show that C is closed and non–empty. 

[3] 

 

(b) Suppose that (X, d) is a complete metric space. 

(i) Define carefully the Hausdorff metric h on the family H(X) of compact subsets of X. 

[3] 

(ii) Explain carefully why the Cantor set C (defined above) belongs to H([0, 1]). 

[2] 

 

(c)  

(i) Suppose that (X, d) is a complete metric space and let (f1, ..., fn) be an iterated function system in X 

realizing the ratio list (r1, ..., rn). Defining a suitable contraction mapping on H(X), prove fully that there 

is a unique attractor of (f1, ..., fn). 

[7] 

(ii) Write down an iterated function system and ratio list for the Cantor set C (defined above) and explain 

why C is the unique attractor of your system. What is the similarity dimension of C? 

[5] 
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Question 4   (a) 

(i) State the Cauchy–Schwartz inequality for n–tuples x = (x1, ..., xn) and y = (y1, ..., yn) of complex 

numbers. 

[2] 

(ii) What does it mean to say that the pair (X, 〈 〉) is an inner product space over a field F of scalars? Prove 

that l2 = {(xn)n : xn ∈ C, n ∈ N, and Σ n ∈ N |xn|
2 < ∞}} is a complex inner product space. 

[5] 

(iii) Suppose that (X, 〈 〉) is an inner product space. Stating precisely any inequalities you use, show that for 

all x, y ∈ X,  

||x + y|| ≤ ||x|| + ||y||. 

Deduce ||x + y|| = ||x|| + ||y|| if and only if y = 0 or x = cy for some non–negative real number c. 

[5] 

 

(b) 

(i) Suppose that {en : n ∈ N} is an orthonormal sequence in a Hilbert space H. Prove that for every x ∈ H, 

the series Σ n = 1
∞ 〈x, en〉 en converges in H. Formulate carefully any ancillary results to which you 

appeal. 

[7] 

(ii) Let xi(t) = ti ∈ C[–1, 1] for i = 1, 2, .... Let 〈x, y〉  = ∫–1
1 x(t) y(t) dt. Find three orthonormal elements 

from the first three terms of the sequence {x1(t), x2(t), x3(t), ...}. 

[6] 
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Question 5   (a) Let H be a Hilbert space. 

(i) Suppose that M is a subspace of H. What is the orthogonal complement of M? 

[2] 

(ii) Let f : H → F be a continuous linear function into the field F of scalars. Prove that there exists a unique 

element u ∈ H such that f(x) = 〈x, u〉 for all x ∈ H. Deduce that ||f|| = ||u||. 

[8] 

 

(b) Let H be a Hilbert space and let T : H → H be a bounded linear operator.  

(i) Prove that there exists a unique bounded linear operator T* : H → H such that  

for all x, y ∈ H, 〈Tx, y〉 = 〈x, T*y〉 . 

[6] 

(ii) Show that ||T*|| = ||T||. 

[3] 

(iii) If T is positive, show that |〈Tx, y〉|2 ≤ 〈Tx, x〉 〈Ty, y〉 for all x, y ∈ H. 

[6] 

 

 

END OF EXAMINATION 

 


