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Question 1.

(a): Let S ⊆ Rn. What does it mean to say that S is connected? [4]

Determine whether the following subsets of R are connected.

(i): Z

(ii): {x : a3x
3 + a2x

2 + a1x+ a0 = 0, for fixed constants a0, a1, a2, a3}

Justify your answers. [8]

(b): Let S ⊆ Rn and T ⊆ Rn, and let f : S → T be a function. What
does it mean to say that f is continuous? [1]

Suppose that S is connected and that f is continuous and onto. Show
that T is connected. [6]

(c): Let f : [0, 1]→ [0, 1] be a continuous function. Show that there is
some t ∈ [0, 1] such that f(t) = t. (Hint: consider the function g given

by g(x) = f(x)−x
|f(x)−x| .) [6]
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Question 2.

(a): Let A ⊆ Rn. What does it mean to say that A is sequentially
compact? [3]

Determine from your definition whether the following subsets of R are
sequentially compact.

(i): Z

(ii): (0, 3]
(iii): [0, 1]

Justify your answers. [14]

(b): Let A be a sequentially compact subset of Rn and f : A → R
m

a continuous function. Let B = f(A). Show that B is sequentially
compact. [6]

State the Heine-Borel Theorem (which characterizes the sequentially
compact subsets of Rn). [2]
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Question 3.

(a): Given a metric space (X, d), describe how to obtain its associated
topological space. [2]

What does it mean to say that a topological space is Hausdorff? [2]

Show that the topological space associated with a metric space is Haus-
dorff. [4]

(b): What does it mean to say that two metrics on a set X are equiv-
alent? [2]

Consider the metric space (R2, dM) given by

dM((x1, x2), (y1, y2)) = |x2 − x1|+ |y2 − y1| .

Draw the open ball of radius 1 with respect to dM around the point
(0,0). [2]

Show that dM is equivalent to the usual (Euclidean) metric dE on R2. [6]

Let dB be the metric on R2 given by

dB(x, y) =

{
0 if x = y
1 otherwise.

Describe the open ball around (0, 0) with respect to dB of radius 1
2
.

Describe the open ball around (0, 0) with respect to dB of radius 2. [4]

Show that dB is not equivalent to dE. [3]
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Question 4.

(a): Define a topological space. [3]

Let (X, τX) be a topolgical space and let Y ⊆ X. What is meant by a
relatively open subset of Y ? [1]

Describe the subspace topology τX|Y on Y . [1]

Prove that (Y, τX|Y ) is a topological space. [6]

(b): What does it mean to say that a topological space is compact? [2]

Let X = {a, b, c, d} and τX = {Φ, {a}, {b, c}, {a, b, c}, {b, c, d}, X},
where Φ denotes the empty set.

Show that (X, τX) is compact. You may not use (without proof) the
fact that any finite topological space is compact. [3]

Is (X, τX) connected? Justify your answer. [3]

Find the interior and closure of each of the sets {b} and {a, d}. [6]
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Question 5.

(a): What is meant by a surface? [2]

What is a planar diagram for a surface? [3]

Draw the planar diagram representing a torus T 2, and give an associ-
ated word. [3]

Draw the planar diagram representing a projective plane P 2, and give
an associated word. [3]

(b): Let XeY eZ be a word representing a compact surface S, where X,
Y and Z each denote a sequence of edges and e denotes a single edge.
Using planar diagrams, show that S is also represented by ffY −1ZX,
for a single edge f . [4]

State, but do not prove, a theorem which classifies compact surfaces
up to topological equivalence. [4]

Classify the surfaces given by the following words:

(i): abc−1d−1ee−1dcb−1a−1,
(ii): aba−1c−1dcbd.

[6]
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