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Question 1.

(a): Let U be a subspace of a vector space V . What is meant by a
basis for U? [3]

(b): Let V = R
3 = {(x, y, z) : x, y, z ∈ R}. Are the following subsets

of V subspaces? Justify your answers.

U1 = {(x, y, z) : x+ 2y + 3z = 0},

U2 = {(x, y, z) : x+ 3y2 = 4}.
[8]

If U1 is a subspace then find a basis for U1 and state the dimension of
U1. If U2 is a subspace then find a basis for U2 and state the dimension
of U2. [5]

(c): Let U and W be subspaces of some vector space V . Define the
subspaces U ∩W and U +W . [2]

State the relationship between the dimensions of U , W , U ∩W and
U +W . [2]

(d): Let P∞ be the vector space of all real polynomials over R. That
is,

P∞ = {a0 + a1x+ a2x
2 + · · ·+ akx

k : ai ∈ R, k ≥ 0}.

Show that P∞ is infinite-dimensional. (Hint: any finite subset of P∞
has an element of maximal degree.) [5]
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Question 2.

(a): Let U and V be vector spaces over a field F . Let T : U → V be
a linear map.

Define what it means for T to be a linear map. [2]

Define Ker(T ), the kernel of T , and Im(T ), the image of T . [2]

Show that Ker(T ) is a subspace of U . [3]

(b): Let U , V , F and T be as in part (a). Suppose that {u1,u2, . . . ,ur}
is a basis for Ker(T ) and that {u1,u2, . . . ,ur,w1,w2, . . . ,ws} is an
extension of this basis to a basis for U .

Show that the vectors T (w1), T (w2), . . . , T (ws) form a basis for Im(T ). [8]

Hence derive a relationship between the dimensions of U , Ker(T ) and
Im(T ). [2]

(c): Let P2 be the set of polynomials of degree at most 2 over the
real numbers. That is,

P2 = {ax2 + bx+ c : a, b, c ∈ R}.

Show that the map T : P2 → P2 given by

T : ax2 + bx+ c 7→ d

dx
(ax2 + bx+ c)

is linear. [3]

Let B be the basis {x2, x, 1} of P2. Find the 3×3 matrix TB representing
T with respect to B. [3]

Find Ker(T ) and Im(T ). [2]
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Question 3.

(a): Let V be a vector space over a field F and let T : V → V be a
linear map. Define the terms eigenvalue, eigenvector and eigenspace of
T . [3]

(b): Let

A =

(
−2 6
−2 5

)
,

where the entries are considered as real numbers.

Find the eigenvalues of A and for each eigenvalue find a corresponding
eigenvector. [4]

Explain why A is diagonalisable. [1]

Write down an invertible matrix P and a diagonal matrix D such that
P−1AP = D. [3]

Hence, or otherwise, find A20 (you may leave powers of integers ex-
pressed as powers of integers). [5]

(c): Consider the linear map T : R2 → R
2 (where vectors are written

as column vectors) given by

T :

(
x
y

)
7→
(

0 1
−1 0

)(
x
y

)
.

What is the geometric interpretation of this map? [3]

Does this map possess any eigenvectors? Justify your answer with
regard to your geometric interpretation. [4]

Is it possible to diagonalise T? Justify your answer. [2]
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Question 4.

(a): Let V be an n-dimensional Euclidean space.

If u and v are vectors in V , how is u · v defined? [1]

Define what it means for {u1,u2, . . . ,ur} to be an orthonormal set. [2]

Given that the set {u1,u2, . . . ,ur} is orthonormal show that it is
also a linearly independent set. Hence deduce that it is a basis for
span(u1,u2, . . . ,ur). [4]

Let U be a subspace of V . Define the orthogonal complement U⊥ of
U . [2]

Show that U ∩ U⊥ = {0}. (You may use the fact that if ‖v‖ = 0 then
v = 0.) [3]

Let the set {u1,u2, . . . ,ur,w1,w2, . . . ,ws} be an extension of the ba-
sis {u1,u2, . . . ,ur} to an orthonormal basis for V . Show that the set
{w1,w2, . . . ,ws} is a basis for U⊥ and hence

dim(U + U⊥) = dim(U) + dim(U⊥).

(You may use the fact that a vector w is orthogonal to each of the
vectors u1,u2, . . . ,ur if and only if w ∈ U⊥.) [5]

(b): Consider R4. Let

u1 =


1
2
1
0

 ,u2 =


6
0
0
2

 ,v =


1
3
5
−4

 .

Let U = span(u1,u2). By using the Gram-Schmidt Procedure, or
otherwise, find an orthonormal basis for U . [3]

Calculate PU(v), the orthogonal projection of v onto U . [3]

Hence find the least distance between the point v and the subspace U . [2]
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Question 5.

(a): Let V be a Euclidean space. What does it mean to say that a
linear map T : V → V is orthogonal? [1]

Prove that a linear map T : V → V is orthogonal if and only if
‖T (v)‖ = ‖v‖. (Hint: consider a vector of the form v1 + v2.) [5]

(b): What does it mean to say that an n× n matrix is symmetric? [1]

Let A be a real symmetric n× n matrix. Prove that the eigenvalues of
A are real. [5]

(c): Let Q : R2 → R be the quadratic form defined by

Q(x, y) = 2x2 − 2xy + 2y2

Find a symmetric matrix A such that Q(v) = vAvT for all v ∈ R2. [1]

Find an orthogonal matrix P and a diagonal matrix D such that
P TAP = D. [6]

Determine the maximum and minimum values taken by Q subject to
the constraint x2 + y2 = 1. Justify your answer. [4]

Find all (x, y) ∈ R2, subject to the constraint x2 + y2 = 1, which
maximise Q. [2]
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