UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2003

COMPUTING AND INFORMATION SYSTEMS

IS51009A (CIS110)
 Introduction to Computing and the Internet

Duration: 3 hours

Date and time:

This paper is in two parts, Part A and Part B. There are a total of three questions in each part. You should answer two questions from Part A and two questions from Part B. Your answers to Part A and Part B should be written in separate answer books.

Full marks will be awarded for complete answers to a total of four questions, two from Part A and two from Part B. Each question carries 25 marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.
Electronic calculators must not be programmed prior to the examination. Calculators which display graphics, text or algebraic equations are not allowed.

Part A: answer TWO questions from this Part

Question 1

(a) (i) Calculate the decimal value of the following binary numbers in two's complement notation:

1) 10001001
2) 00110010
(ii) State the advantages of two's complement notation.
(b) An 8-bit processor has instructions that consist of 3-bit op-codes with a 5-bit operand, as described in the following table. (The operand "ddddd" stands for any sequence of 5-bits which is to be interpreted as data. The operand "aaaaa" stands for any sequence of 5-bits which is to be interpreted as an address.)

Opcode	Operand	Description
001	d d d d d	Load the accumulator with the data 111ddddd
010	a a a a a	Add to the accumulator the data at the address aaaa
100	a a a a a	Write the content of the accumulator to the address aaaaa
110	a a a a a a	Make the content of the cell aaaaa to be 11111111
111	a a a a a a	Halt

Given the following program which starts at address 000000 , describe what the program does, step by step.

Address	Instruction
00000	00100011
00001	01010000
00010	10010001
00011	11010010
00100	11100100
:	:
10000	00000001
10001	00011111
10010	00010000

(c) The following bit pattern represents a single precision floating point number with an 8 bit exponent (with a bias of 127) and a normalised 23 bit significand conforming to IEEE 754.

Sign	Exponent	Significand
0	01111111	11000000000000000000000

Showing all your working, calculate which number this represents in base 10 .

Question 2

(a) (i) How does a floppy disc store information?
(ii) How is information read from a floppy disc?
(b) (i) What is 'random access'?
(ii) Which of the following two types of devices are random access devices: compact disks and main memory? Explain your answers.
(c) Explain how the central process unit runs a program stored in the main memory.
(d) How does cache memory work?

Question 3

(a) Explain why operating systems are needed.
(b) What is 'programmed I/O'?
(c) Explain the concept of 'Direct Memory Access'.
(d) Distinguish between 'long term scheduler', 'medium term scheduler' and 'short term scheduler'.
(e) What is 'demand paging'? Why it is useful?

