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Question 1 Let G be a graph.

(a)
(b)

()

Explain what it means to say that a subgraph T of GG is a tree. [2]

Describe a recursive algorithm for constructing a maximal tree which contains
a given vertex vy in G. (3]

Suppose that GG is connected and that the edges of G have been given integer
weights. Explain how the algorithm you described in (b) can be modified to
construct:

(i) a breadth first search spanning tree of G' rooted at vy;

(ii) a depth first search spanning tree of G rooted at vy;

(ili) a maximum weight spanning tree of G.
[3]

Use the algorithms you described in (c) to construct a depth first search span-
ning tree rooted at v; and a maximum weight spanning tree of the following
network. (For each tree, label the vertices as #1 = vy, 2 = v19, etc., to show
the order in which you choose them using the recursive algorithm.)

Ug
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(e) Let D be a digraph and H be a subgraph of D.

(i) Explain what it means to say that H is strongly connected and that H is
a strongly connected component of D. [2]

(ii) Explain how the algorithm you described in (b) can be modified to con-
struct the strongly connected components of D. [3]

(iii) Use the modified algorithm to construct the strongly connected compo-
nents of the digraph Dy with the following adjacency table. (In this
adjacency table a ‘1’ in row v; and column v; means there is an arc in Dy
from vertex v; to vertex v; and a ‘0’ means there is no arc in Dy from v;

to v;.)

UVy Uy U3 U4 Uy Vg Ut
vnw 0 1 1 1 1 0 1
v, 0 0 1 0 0 1 1
v 0 0 0 O 0 0 1
uy 1 1 1 0 1 1 1
vs 0 1 1 0 0 0 1
v 0 0 1 0 1 0 1
vy 0 0 1 0 0 0 O
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Question 2 (a) Let S and 7' be sets. Let f and g be real valued functions defined
on S and T, respectively. Explain what it means for an equation to be a
mazx/min formula for f and g. Explain how such a formula is useful for solving
optimization problems. [3]

(b) Let N be a directed network in which each arc e has been given a non-negative
weight c(e) called the capacity of e. Let 2 and y be vertices of N.

(i) Explain what it means for a real valued function f defined on A(N) to
be an zy-flow in N. Define the value of the flow. [3]

(ii) Explain what it means for a set of arcs of N to be an zy-cut in N. Define
the capacity of the cut. [2]

(iii) State, without proving, a max/min formula for determining the maximum
value of an zy-flow in N. [2]

(c) In the network Ny, shown below, a flow fy is indicated by the numbers in
brackets and the capacity of each arc by the numbers not in brackets.

x

)

Use the maximum flow algorithm to find a flow of maximum value from z to

y in Ny, starting with the given flow fy, and giving a brief description of the
steps in the algorithm.

Use your result from (b)(iii) to demonstrate that the flow you obtain does
indeed have maximum value. [10]

MT53007A (M331) 2002 4



(d)

Let Dy be the digraph obtained by ignoring the capacities and flows on the
arcs of the network Nj given in (¢). Determine a maximum set of pairwise
arc-disjoint directed zy-paths in D;. Justify the fact that the set you obtain
is indeed maximum.

Question 3 (a) Explain what it means to say that a set of edges M in a graph

(b)

G is a matching and to say that a path P in G is M-augmenting.

Let G be a bipartite graph with bipartition X,Y. State the result of Hall which
gives a necessary and sufficient condition for G to have a matching which sat-
urates X.

Use augmenting paths to determine whether the bipartite graph with the fol-
lowing bipartite adjacency matrix has a perfect matching, starting from the
matching My = {z1y1, T2Y2, T3Y3, T4Ys, T5Ya, TeYs, TeYe ). Give a brief descrip-
tion of the steps in your algorithm.

Yi Y2 Ys Ya Ys Ye Y7 Ys Yo
xz 1 1 0 1 0 1 1 0 1
x» 1 1 0 0 1 0 0 1 0
x 0 1 1 0 1 1 1 0 1
x4 1 0 0 O 1 0 0 1 O
x 1 0 1 1 1 1 0 1 0
z¢ 0 1 0 O 1 0 0 1 O
zz 1 1 0 0 0 O 0 1 O
x 0 1 1 0 1 1 1 1 1
g 1 1 0 0 1 0 0 1 0

Use Hall’s theorem to justify your answer.

State the result of Tutte which gives a necessary and sufficient condition for a
graph GG to have a perfect matching.

Construct a 2-edge-connected graph G such that G has an even number of
vertices, each vertex of GG has degree four and G has no perfect matching. Use
Tutte’s theorem to demonstrate that the graph you construct has no perfect
matching,.
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Question 4 Let R be a network obtained by giving each edge e of the complete
bipartite graph K, , an integer weight w(e).

(a) Explain what it means for a function [ from V(R) into the integers to be a
feasible vertex labelling. Define the equality subgraph R(l). [4]

(b) State, without proving, a max/min formula which determines the maximum
weight of a perfect matching in R. [2]

(c) Describe an algorithm which finds a perfect matching of maximum weight in

R. 8]

(d) Use the algorithm for the optimal assignment problem to find a maximum
weight perfect matching in the weighted complete bipartite graph K55 with
weights given by the following matrix.

Y Y2 Yz Ya Ys
x2 5 1 2 3 3
xn 4 3 4 4 3
rx3 3 2 5 6 2
g 1 2 3 2 1
xs 1 2 1 2 1

Use the max/min formula you stated in (ii) to verify that the matching you
have obtained does indeed have maximum weight. [11]
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Question 5 (a) State, without proving, necessary and sufficient conditions for a
graph G to have an Euler tour. [2]

(b) Explain how the problem of finding a shortest closed walk which traverses every
edge of a connected network N can be converted to the problem of finding a
minimum weight perfect matching in a complete graph. [8]

(c) Let N be the network shown below.

(i) Use Dijkstra’s algorithm to construct a spanning tree which contains
shortest paths from vg to every vertex of N. [7]

(i) Let Wi and W; be the shortest walks in N which traverse every arc of N
at least once, and are such that:

e W, starts and ends at vg;

o W, starts at vg and ends at vs.

Suppose £(W;) = w(N)+ m; for i € {1,2}. Determine m; and my giving
a short explanation of how you obtain each answer. 8]
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