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Question 1 (a) Derive Euler’s equation of motion for an inviscid fluid in the form

D 1
F(;l = —; grad P — gradV,

where p is the density, q the velocity of the fluid, —gradV is the gradient of
the potential energy V due to the body force acting, P is the fluid pressure,

and D 5
Di = 91 T (@V)
is the differential operator following the fluid. [7]

(b) At any time ¢ a fluid flow has the following velocity components in the x,y and
z directions
u=1 v=1+4+6t, w=0.
Find the streamline at ¢ = 0 passing through the point (0,0,0). [4]

Determine and sketch the path of the particle of fluid which is at the point
(0,0,0) when t = 0, adding to the sketch the streamline at that point. [5]

(¢) An incompressible, inviscid fluid is in steady rotation under gravity with ve-
locity components
ur =0, ug = wr, uy, =0,

referred to cylindrical polar axes with the z-axis vertically upwards. Given that
w is a constant, show that the pressure at any point in the fluid is given by

1
P = §pw2r2 — pgz + constant,

2

where 72 = 22 + 32 and g is the gravitational acceleration.

[9]

Question 2 (a) Starting from Euler’s equation of motion, stated in question 1,
show that for a steady irrotational flow of an incompressible inviscid fluid,
Bernoulli’s equation takes the form

P 1
— + -q? +V = constant,
p 2

where P is the pressure, p the density, q the velocity of the fluid and V is the
potential due to conservative body forces acting on the fluid.

8]
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(b) An incompressible inviscid liquid is contained between two co-axial cylinders of
inner and outer radii a and b respectively, the common axis is vertical and coin-
cides with the z-axis. The upper surface of the liquid is open to the atmosphere
at pressure P4 and the liquid is bounded below by a rigid plane base z = 0.
The liquid is in motion under gravity so that the rectangular components of
velocity at the point (z,y,2) are

wa?y wa’z 0
202 7 9p2 777

2= 4 y2 and w is a constant.

where r

(i) Verify that the motion is irrotational. [5]

(ii) Show that when the depth is a at the inner boundary and 2a at the outer
boundary, the value of w is given by

W2 = 8gb°
a(b? —a?)’
where ¢ is the acceleration due to gravity. [12]
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Question 3 (a) In a fluid containing no source or sink, show that the density p
and velocity g of the fluid satisfy the continuity equation

ap . _
N +div (pq) = 0.

(b) A sphere, whose centre is fixed and has a radius, R, at time ¢ given by
R =B+ At?,

where A and B are constants, is immersed in an infinite non-viscous, incom-
pressible fluid of density p. As the sphere contracts the fluid moves inwards in
a spherically symmetric manner, under no body forces, but remains at rest at
infinity under a constant pressure Ps. Show that the velocity potential of the
fluid at a distance r from the centre of the sphere is given by

t
¢ = & forr > R,
r
where f(t) is an arbitrary function of time. [7]

(c) Show that the pressure on the surface of the sphere is

P, = Ps + 2Ap (B + 4At2) :

[10]
(You may assume that
diveg= r2 or (T ur) - rsin6 90 (ug sin 6) + rsin@%

in spherical polar coordinates (r, 6, ¢) , where g=(u,, ug, uyp) is the fluid velocity.)

Question 4 (a) An incompressible, inviscid fluid of density p flows irrotationally.
Show that there exists a velocity potential function, ®, for this flow which
satisfies Laplace’s equation V2® = 0. 5]

(b) Giventhat ® =U (7“ + 2%35) cos @ is the velocity potential function representing
the fluid flow of an inviscid, incompressible fluid past a fixed sphere of radius
a with a velocity U parallel to the line 8 = 0, show that the streamlines of this
flow satisfy the equation

(r® — a®)sin? 6 = Cr,

where C is a constant. Sketch the streamlines indicating particularly the
streamline for C=0. [12]
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