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Question 1 (a) Write z = R(cos θ+ i sin θ) and w = r(cosφ+ i sinφ). Show
that

|z + w| =
√
R2 + 2Rr cos(θ − φ) + r2.

[3]

(b) By considering the real and imaginary parts of ez, or otherwise, show
that the solutions of ez = 1 are

z = 2nπi for n ∈ Z.

You may assume the identity ex+iy = ex(cos y + i sin y). [5]

(c) Define f(z) = z̄(z2 − 1) for all z ∈ C.

(i) Find real valued functions u(x, y) and v(x, y) such that

f(x+ iy) = u(x, y) + iv(x, y)

for all x+ iy ∈ C. [4]

(ii) Show that f satisfies the Cauchy–Riemann equations at z = x+ iy
if and only if

x2 − y2 = 1 and xy = 0.

[6]

(iii) Hence deduce that f is differentiable at −1 and 1, but nowhere else. [5]

(iv) Give the values of f ′(−1) and f ′(1) [2]

Here z̄ denotes the complex conjugate of z.

MT53002A (M310) 2002 2 TURN OVER



Question 2 (a) Given a function

u(x, y) = 4xy3 − 4x3y,

find a real valued function v(x, y) such that

f(x+ iy) = u(x, y) + iv(x, y)

is analytic on C. [7]

(b) Let f(z) be an entire function, let α ∈ C and let γ be a closed path whose
image does not contain α. Write down Cauchy’s formula for∫

γ

f(z)

(z − α)n+1
dz.

[3]

(c) Evaluate the path integral ∫
γ

z sin πz

(z − 1)3
dz,

where γ is the positively oriented circle centred at 0 with radius 2. [5]

(d) (i) Show that for f entire and r > 0,

f(α) =
1

2π

∫ 2π

0
f(α + reiθ) dθ.

[5]

(ii) Hence by considering α = 0, r = 1 and f(z) = exp zn, show that∫ 2π

0
exp(cosnθ) cos(sinnθ) dθ = 2π.

[5]
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Question 3 (a) Define γ: [0, 1]→ C by γ(t) = t2 + it3.

(i) Find the length of γ from first principles. [4]

(ii) Compute the path integral ∫
γ
z̄ dz.

[4]

(iii) Let δ be the straight line from γ(0) to γ(1). Compute the path
integral ∫

δ
z̄ dz.

[3]

Here z̄ denotes the complex conjugate of z.

(b) Locate and classify the isolated singularities of

(i)
z − sin z

z3
.

(ii)
exp z2

z2
,

(iii)
1

sin 1/z
,

Further in the case of a pole compute the residue at the pole. [14]

You may assume the solutions of sin(z) = 0 are

z = nπ for n ∈ Z.
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Question 4 (a) Let f be a nonconstant entire function with f(α) = 0 for
some α ∈ C.

(i) Show that there exists an integer m ≥ 1 and an entire function g
such that f(z) = (z − α)mg(z) and g(α) 6= 0. [8]

(ii) Hence deduce that α is not a limit point of the zeros of f . [5]

(b) Find the Laurent expansion of the function

1

z3 − z

in the region |z − 1| > 2. [7]

(c) Evaluate the following path integral

∫
γ

exp z2

(2z + 1)(2z − 1)
dz

where γ is the positively oriented unit circle with center 1. [5]
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Question 5 (a) Let f be an analytic function on a region Ω ⊆ C except at
a point α ∈ Ω and let m ≥ 1 be an integer. Show that if

lim
z→α

(z − α)mf(z)

exists and is not 0 then f has a pole of order m at α. [6]

You may assume that if g is an analytic function on Ω \ {α} and

lim
z→α

g(z)

exists then g has a removable singularity at α.

(b) Evaluate the integrals

(i)
∫ 2π

0

dθ

3 + 2 cos θ
; [9]

(ii)
∫ ∞
−∞

x2

(x2 + a2)2
dx (where a > 0). [10]

MT53002A (M310) 2002 6 END OF EXAMINATION


