UNIVERSITY OF LONDON

GOLDSMITHS COLLEGE

B. Sc. Examination 2002

MATHEMATICS

MT52016A(M227) Analysis and Applied Mathematics

Duration: 3 hours

Date and time:

Do not attempt more than \underline{THREE} questions in section A. Do not attempt more than \underline{THREE} questions in section B.

Full marks will be awarded for complete answers to <u>SIX</u> questions; three from section A and three from section B. USE SEPARATE BOOKLETS FOR SECTION A AND SECTION B.

Electronic calculators may be used. The make and model should be specified on the script and the calculator must not be programmed prior to the examination.

THIS EXAMINATION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

0.1 SECTION B

Question 1 (a) Use the D-operator method or otherwise to solve the following differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 4e^{-x}\sin 2x.$$

[10]

(b) Solve for x and y, using the D-operator method, or otherwise, the following system of differential equations

$$\frac{dx}{dt} + 2x + y = 0$$

$$\frac{dy}{dt} + x + 2y = e^t$$

given that x = 0, y = 0 at t = 0.

[10]

Question 2 The differential equation

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (1 - 2x)y = 0,$$

has solutions of the form $y = \sum_{r=0}^{\infty} a_r x^{c+r}$.

- (a) Show that $c = \frac{1}{2}$ or 1. [6]
- (b) Show also that

$$a_r = -\frac{2}{(c+r)(2c+2r-3)+1} a_{r-1},$$

where $r = 1, 2, 3 \dots$ [5]

(c) Hence obtain two linearly independent solutions of the differential equation, and calculate the first four terms in each solution. [9]

Question 3 (a) A function f(x) of period 2π is defined in the interval $[-\pi, \pi]$ by

$$f(x) = 0, -\pi \le x < 0$$

= $x, 0 \le x \le \pi$.

(i) Sketch the graph of
$$f(x)$$
 in the range $-3\pi < x < 3\pi$. [4]

(ii) Find the Fourier series for
$$f(x)$$
. [16]

Question 4 Let y(t) be a function such that

$$\lim_{t \to \infty} e^{-st} y(t) = 0 \quad \text{and} \quad \lim_{t \to \infty} e^{-st} \frac{dy}{dt} (t) = 0 \text{ for a given parameter } s.$$

(a) Given that the Laplace transform of y(t) is defined by

$$L\{y(t)\} = \int_0^\infty e^{-st} y(t)dt = \bar{y}(s),$$

where $\bar{y}(s)$ is a function of the parameter s, show that for s > a

$$L\{e^{at}\} = \frac{1}{s-a}.$$

[3]

(b) Show also that for s > a

$$L\{te^{at}\} = \frac{1}{(s-a)^2}.$$

[3]

(c) Show that

$$L\left\{\frac{dy}{dt}(t)\right\} = sL\left\{y(t)\right\} - y(0),$$

[3]

(d) Apply Laplace transforms to solve the differential equation

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 6te^{2t},$$

given that

$$y = 1$$
 and $\frac{dy}{dt} = 1$, when $t = 0$.

MT52016A(M227) 2002

3

TURN OVER

It may be assumed that

$$L\{e^{at}t^n\} = \frac{n!}{(s-a)^{n+1}},$$

and

$$L\{\frac{d^2y}{dt^2}(t)\} = s^2 L\{y(t)\} - sy(0) - \frac{dy}{dt}(0).$$

[11]

Question 5 Find the solution of the wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2},$$

where c is a real constant and y(x,t) is the displacement of a string of length ℓ which satisfies the following conditions

$$\begin{array}{rcl} y & = & 0 \text{ at } x = 0 \text{ and at } x = \ell \text{ for all values of } t, \\ y & = & a \sin \frac{\pi x}{\ell} \text{ when } t = 0 \text{ for all } x \in [0, \ell] \,, \\ \frac{\partial y}{\partial t} & = & b \sin \frac{\pi x}{\ell} \text{ when } t = 0 \text{ for all } x \in [0, \ell] \,. \end{array}$$

[20]

Question 6 (a) Find div \mathbf{A} and curl \mathbf{A} given that

$$\mathbf{A} = x^2 y \mathbf{i} - yz \mathbf{j} + 3y^2 z \mathbf{k}.$$

[6]

(b) (i). Evaluate

$$\oint_{\mathcal{C}} x^2 y dx + xy^2 dy,$$

where c is the closed curve of the region bounded by $y=x^2$ and y=x, and is traversed in the positive anti-clockwise sense. [7]

(ii). Check this result by use of Green's Theorem. [7]

END OF EXAMINATION