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0.1 SECTION B

Question 1 (a) Use the D-operator method or otherwise to solve the following
differential equation

d? d
d_m:z — 4d_i + 3y = 4e” " sin 2z.

[10]

(b) Solve for x and y, using the D-operator method, or otherwise, the following
system of differential equations

dx
— +2 =0
a +2r+y

d
d—i+m+2y:et

given that z =0,y =0 at t = 0. [10]

Question 2 The differential equation

d? d
Q—y—x—y—i—(l—Zw)y:O,

2
* dz? dx

has solutions of the form y = >0°  a,z".

(a) Show that ¢ =1 or 1. 6]

(b) Show also that
2

(c+7r)(2c+2r—3)+1

Ay = — Ar_1,

where r =1,2,3.... [5]

(¢) Hence obtain two linearly independent solutions of the differential equation,
and calculate the first four terms in each solution. [9]
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Question 3 (a) A function f(x) of period 27 is defined in the interval [—m, 7| by

flz) = 0, -7 <x<0
= z, 0<z<m.

(i) Sketch the graph of f(x) in the range -37 < x < 3. [4]
(ii) Find the Fourier series for f(x). [16]
Question 4 Let y(t) be a function such that
: —st : —st dy 3
thm e *y(t)=0 and thm e (t) = 0 for a given parameter s.
(a) Given that the Laplace transform of y(t) is defined by
Ly} = [ eyt =g(s),
where (s) is a function of the parameter s, show that for s > a
1
L aty _ .
e} = —

3]

(b) Show also that for s > a

1
L{te™} = :
ey ==

3]

(c) Show that

dy
L% (1)) = sLiy(®)} -y (0).

3]

(d) Apply Laplace transforms to solve the differential equation

dy  dy 21
A A
az Ay Ty = Gte
given that
—1and ¥ _ 1 whent =0
y=1land - =1,whent=0.
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It may be assumed that

n!

L{et"} = —————
{ } (S _ a)n-i-l

and
2
L{EE () = L) - w0 - 2 0).

[11]

Question 5 Find the solution of the wave equation

0%y 1 0%y

or? 2 ot2’
where c is a real constant and y (,t) is the displacement of a string of length ¢ which
satisfies the following conditions

y = 0atxz=0andat x =/ for all values of t,
y = asin% when ¢t =0 for all z € [0,/],
% bsinﬂ% when ¢t =0 for all z € [0,].
[20]
Question 6 (a) Find div A and curl A given that
A = 2yi—yzj+3y°zk.
(6]
(b) (i). Evaluate
]{xzydx + zydy,
where ¢ is the closed curve of the region bounded by y = z?and y = z, and
is traversed in the positive anti-clockwise sense. [7]
(ii). Check this result by use of Green’s Theorem. [7]

END OF EXAMINATION
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