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SECTION A

Question 1 (a) Using the Sandwich theorem, or otherwise, prove that:

lim
x→0

x sin 2x
x2 − 1

= 0.

[5]

(b) Find each of the following limits.

(i) lim
x→0

ex − 1
x

[3]

(ii) lim
x→0

secx− 1
1− cosx

. [4]

(c) (i) Sketch the graphs of y = 3|x+ 2| and y = 2− x on the same axes. [2]

(ii) Find, algebraically, the solution set for the following inequality,

3|x+ 2| < 2− x.

Express your answer as an interval and give the supremum of that interval. [6]

Question 2 (a) By using the method of Implicit Differentiation, or otherwise, find
an expression for dy

dx in terms of x and y at all points at which this derivative
exists on the curve

2x2 − 2xy + 3y2 = 15.

[4]

Determine all points (x, y) on this curve where dy
dx does not exist. [3]

(b) Define

f(x) =


loge(1 + x)

x
if x 6= 0;

1 if x = 0.

(i) Show that f ′(x) =
x− (1 + x) loge(1 + x)

x2(1 + x)
for x 6= 0; [3]

(ii) Using l’Hôpital’s rule, or otherwise, show that

lim
h→0

loge(1 + h)− h
h2

= −1
2
.

Hence deduce that f ′(0) = −1
2 . [5]

(iii) Show that f ′(x) is continuous at x = 0. [5]
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Question 3 (a) State the Mean Value Theorem for a function f : [a, b]→ R. [4]

(b) Apply the Mean Value Theorem to the function f(x) = sinhx on the interval
[a, b], where 0 ≤ a < b, and deduce that

sinh b > b

for all b > 0. [5]

You may assume that cosh c > 1 for all c > 0.

(c) The function f :R→ R is defined by

f(x) = (x+ 1)(x− 5)2.

(i) Find any local maxima and any local minima. [5]

(ii) Find any points of inflection. [2]

(iii) Sketch the graph of y = f(x) showing the above information. [4]

Question 4 (a) State Taylor’s Theorem, with an error term, for f :R→ R which
is (n+ 1)-times differentiable on R. [5]

(b) Determine up to the coefficient of x3 the Taylor expansion of the function
f(x) = sinx about x = 0, and find an expression for the error term. [7]

By using the fact that for any t ∈ [0, 0.1] we have

0 ≤ sin t ≤ t,

or otherwise, show that the worst possible error that might occur for x ∈ [0, 0.1]
is not more than 4.2× 10−6. [3]

(c) Show that

lim
n→∞

(
n+ 1
n+ 2

)n
=

1
e
.

You may use the identity

lim
n→∞

(
1 +

α

n

)n
= eα.

Hence deduce that ∞∑
n=0

(
x

n+ 1

)n
converges for all x ∈ R. [5]
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SECTION B

Question 5 (a) Determine the following indefinite integral∫
e−2x cos 3xdx.

[10]

(b) Sketch the area over which the following integral is evaluated∫ x=1

x=0

∫ y=
√
x

y=x2

(
x2 + 2y

)
dydx.

Evaluate this double integral. [10]

Question 6 (a) Evaluate the following in the form x+ iy

(i)

(5− 3i) (−2− 5i) ;

(ii)

−2 + 5i
4− 3i

.

[4]

(b) Find in the form reiθ, where −π < θ ≤ π, the complex number(√
3 + i

)8
.

[4]

(c) Use De Moivre’s Theorem to show that

cos 3θ = 4 cos3 θ − 3 cos θ.

[4]

(d) Solve the equation

z4 =
(
1 +
√

3i
)3
,

where z = x+ iy, obtaining four distinct roots. [8]
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Question 7 (a) Sketch the region bounded by the parabola y = 5 − x2 and the
line y = 3− x, and find the volume of the solid generated when this region is
rotated about the x-axis. [10]

(b) Let In =
∫
xn cosxdx.

(i) Show that

In = xn sinx+ nxn−1 cosx− n (n− 1) In−2, for n ≥ 2.

(ii) Determine the indefinite integral In for n = 4. [10]

Question 8 (a) Solve the following first order differential equation

(
x2 + 1

) dy
dx

+ 2xy = 4x2,

given that y = 0 when x = 1. [10]

(b) Find the general solution of the following second order differential equation

d2y

dx2
− dy

dx
− 6y = 3x2 + 2.

[10]

Question 9 (a) Given f(x, y) = x2y + xy2, where x = u + v and y = −u + v,
sketch appropriate tree diagrams and determine

∂f

∂u
and

∂f

∂v
in terms of u and v .

[10]

(b) The Luminosity L, radius R, and temperature T of a star are related by the
expression

L = CR2T 4,

where C is a constant. Suppose that there are percentage errors of 10% and
5% in the measurements of R and T respectively.

Approximate the maximum percentage error to first order in the calculated
value of L.

[10]
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