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Question 1 (a) Let X be a vector space over a field F and let {x1, . . . ,xn}
and {y1, . . . ,ym} be finite subsets of X.

(i) Define the set span {x1, . . . ,xn}. [1]

(ii) Show that span {x1, . . . ,xn} is a subspace of X. [5]

(iii) Explain what it means to say that {y1, . . . ,ym} is a linearly inde-
pendent set and that {y1, . . . ,ym} is a basis of X. [2]

(iv) Suppose that {y1, . . . ,ym} ⊆ span {x1, . . . ,xn}. Describe how a
matrix A may be formed such that if z = µ1y1 + · · · + µmym then
z = λ1x1 + · · ·+ λmxn where λ1

...
λn

 = A

 µ1
...
µm

 .
Deduce that if {y1, . . . ,ym} is linearly independent then m ≤ n. [9]

(v) Conclude that if {x1, . . . ,xn} and {y1, . . . ,ym} are bases of X then
n = m. [2]

(b) Let x1,x2,x3 and y be vectors in the space R3 given by

x1 =

 1
3
−1

 , x2 =

 2
4
1

 , x3 =

 3
5
3

 , z =

 4
6
5

 .

(i) Is z ∈ span {x1,x2,x3}? [4]

(ii) Is {x1,x2,x3} a basis of R3? Justify your answer. [2]
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Question 2 (a) Let X be a vector space over a field F.

(i) State necessary and sufficient conditions for a subset Y of X to be
a subspace of X. [3]

(ii) Let U and V be subspaces of X. Define U ∩ V and U + V . [2]

(iii) Prove that U + V is a subspace of X. [5]

(b) Let X be the vector space RR of all real valued functions on R and let Y
be the subset of X of all continuous functions. Show that Y is a subspace
of X. [6]

(c) Let u1,u2,u3 and v1,v2 be vectors in the space R4 given by

u1 =


1
−1
2
1

 , u2 =


2
−3
5
1

 , u3 =


1
0
1
2

 , v1 =


2
2
−1
5

 , v2 =


1
1
−2
1

 .

Set U = span {u1,u2,u3} and V = span {v1,v2}.

(i) Find bases for U , V , U + V and U ∩ V . [8]

(ii) What are dimU , dimV , dimU + V and dimU ∩ V ? [1]
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Question 3 (a) Let X be a finite dimensional vector spaces over a field F
and let T :X → X be a linear transform.

(i) Define what it means for T to be a linear transform. [2]

(ii) Define KerT , the kernel of T , and ImT , the image of T . [2]

(iii) Let {u1, . . . ,ur} be a basis of KerT and let {u1, . . . ,ur,v1, . . . ,vs}
be an extension to a basis of X. Show that {T (v1), . . . ,T(vs)} is a
basis of ImT . [9]

(b) Let T :R3 → R
3 be given by

T

xy
z

 =

 x− 3y
2y + z

x+ 3y + 3z

 ,

and let S be the standard basis.

(i) Compute the matrix representing T with respect to S. [2]

(ii) Give a basis of KerT . [3]

(iii) Find a basis B of R3 such that the matrix D = (T )B,B representing
the transform T is diagonal.

You do not need to find a matrix P such that D = P−1(T )S,SP . [7]
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Question 4 (a) Let X be a vector space over a field F and let T :X → X
be a linear transform.

Define the terms eigenvalue, eigenvector and eigenspace of T . [3]

(b) Let

M =
(

2 −1
−1 2

)
.

(i) Find the eigenvalues and corresponding eigenspaces for M when M
is considered as a linear transform acting on R2. [7]

(ii) Find an invertable matrix P , its inverse P−1 and a diagonal matrix
D such that D = P−1MP . [4]

(iii) Calculate the matrix M10.

You may note that 310 = 59049. [2]

(c) Let P2 be the real vector space of all polynomials of degree less than or
equal to 2, with real coefficients, and basis B = {1, x, x2}. Let T :P2 → P2

be defined by

T (p) =
d2p

dx2
− 3

dp

dx
+ p.

(i) Show that T is a linear transform. [3]

(ii) Compute the matrix representing T with respect to B. [3]

(iii) Use the matrix representation of T to find a particular integral
p ∈ P2 of the differential equation

d2p

dx2
− 3

dp

dx
+ p = x2 − 5x.

[3]
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Question 5 (a) Let {x1, . . . ,xk} be an orthonormal set of vectors in Rn and
U = span {x1, . . . ,xk}.

(i) Define what it means for {x1, . . . ,xk} to be orthonormal. [2]

(ii) By using the fact that {x1, . . . ,xk} is orthonormal, show that the
set {x1, . . . ,xk} is linearly independent.

Hence deduce that {x1, . . . ,xk} is a basis of U . [4]

(iii) Define the orthogonal compliment U⊥ of U . [1]

(iv) Show that if y is orthogonal to each of the vectors x1, . . . ,xk then
y ∈ U⊥. [4]

(b) Let u1,u2,x be vectors in R4 and A be the 4× 2 matrix given by

u1 =


1
1
1
1

 , u2 =


1
1
2
−2

 , x =


3
1
3
−1

 , A =


1 1
1 1
1 2
1 −2


Set U = span {u1,u2}.

(i) Find an orthonormal bases of U . [3]

(ii) Find the least squares solution to the system of equations Av = x,
and hence find the closest point u ∈ U to x. [5]

(iii) Find a basis of U⊥, and hence extend your orthonormal basis of U
to an orthonormal basis of R4. [6]
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