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Chapter 11

Kinematics Reconstruction of Static Calligraphic Traces from
Curvilinear Shape Features

Daniel Berio*, Frederic Fol Leymarie∗ and Réjean Plamondon†

Our goal is to be able to reproduce computationally calligraphic traces, such as
found in the art practices of graffiti and various forms of more traditional cal-
ligraphy, while mimicking their production process. To this end, we propose a
method that allows to reconstruct kinematics solely from the geometric sam-
ples of handwritten traces in the form of parameters of the Sigma-Lognormal
model. We ignore the kinematics possibly embedded in the data in order to
treat online data and vector patterns with the same procedure.

At the heart of our method, we develop a robust procedure to identify
curvilinear shape features based on an analysis of local symmetry axes. These
features determine the segmentation of a trace into circular arcs and guide an
iterative reconstruction of the input kinematics and geometry in the form of
Sigma-Lognormal parameters. We demonstrate how this parametrisation can
be used to generate plausible kinematics for a static input trace, and how pa-
rameter variations can be exploited to generate traces that resemble the ones
seen in real instances of human made calligraphy and graffiti.

1. Introduction

Many handwriting analysis methods rely on a prior segmentation of the written
trace into constituent primitives or strokes. Some methods exploit the kinemat-
ics of the movement and segment the trajectory in correspondence with min-
ima or other features of velocity [O’Reilly and Plamondon, 2008; Plamondon
et al., 2014]. Using the known inverse relation between speed and curvature
[Viviani and Schneider, 1991], other methods rely on the identification of cur-
vature extrema along the pen-trace [De Stefano et al., 2005; Ferrer et al., 2018],
where movement slows down or has to stop momentarily to allow for a discrete
change in orientation. This fits with a modelization of handwriting in the form
of ballistic “stroke” primitives, in which curvature extrema will typically corre-
spond with velocity minima and are indicative of the initiation of a new stroke.
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Most of the existing works are aimed either at a precise analysis of the kine-
matics of a digitised input or at the segmentation of a handwriting trace into
components for biometric or pattern recognition purposes. On the other hand,
our specific aim is perceptually and artistically driven, and we seek to infer a
physiologically plausible motion from an input trace, the kinematics of which
may be unavailable, such as when using vector graphics inputs, or may be de-
graded or unreliable due to the poor quality of a digitisation device, such as
when using low cost tablets or trackpads. The motivation for this approach
is grounded on the hypothesis that the visual perception of marks made by
a drawing hand triggers activity in the motor areas of the brain [Freedberg
and Gallese, 2007; Longcamp et al., 2003], and further induces an approximate
mental recovery of the (likely) movements and gestures underlying the artistic
production [Freyd, 1983; Pignocchi, 2010]. We argue that this is particularly true
for certain art forms such as expressed in calligraphy [Fong, 2003] and graffiti
art [Berio et al., 2017a; Mediavilla, 1996], in which the mastery of a skilful move-
ment in large part determines the aesthetic quality of the resulting artefact.

Symbol Meaning

z(s) Input trace (parametrised)

z i (s) Trace segment

zκmax
i Curvature maximum locus (on trace)

z lhs
i (s) Left segment (for a given zκmax

i )

z r hs
i (s) Right segment (for a given zκmax

i )

CC i Contact circleåCC i Contact circular arc

NC SF Number of Curvilinear Shape Features

NS Number of strokes (drawn gestures)

ΣΛ Sigma Lognormal (SL) function

sl t (t ) SL generated trace

p i Virtual or Aiming target per stroke

Table 1.: Main symbols.

In this chapter we take advantage of the duality between curvature and
symmetry axes [Leyton, 1987] in order to extract more robustly curvilinear
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shape features, such as those based upon extrema (of some curvature mea-
sure or approximation) along a handwriting or drawing trace. The method is
also directly adaptable to open contours (with ends), to contours with breaks
in curvature (non differentiable at some finite set of loci), and can further be
used to identify loops (such as where a trace overlaps itself). Each feature is
also explicitly paired with corresponding contact gauges (in the present case:
circles) and a pair of curvilinear support regions: contour traces on each side of
an identified extremum, where curvature is approximately monotonic. Given
such a robust and rich feature description of an handwritten trace, we show
how to exploit this spatial and structural geometric representation to infer the
kinematics of a likely generative movement — as would be performed by a
skilled human expert or artist, as predicted by the lognormality principle. To
do so, we rely on the Kinematic Theory of Rapid Human Movements [Plamon-
don, 1995; Plamondon et al., 2014], a family of models of reaching and hand-
writing motions, in which a movement is described as the result of the paral-
lel and hierarchical interaction of a large number of coupled neuromuscular
components. The resulting method allows the reconstruction of physiologi-
cally plausible velocity profiles for the geometric trace of an input movement
given as an ordered sequence of points. While state of the art methods exist
for the parameter reconstruction of Kinematic Theory based models from digi-
tised traces of handwriting [O’Reilly and Plamondon, 2008; Plamondon et al.,
2014; Fischer et al., 2014; Ferrer et al., 2018], we design our method with the
goal of targeting applications in graphonomics, computer aided design (CAD)
and computer graphics. As a result, we purposely ignore the kinematics of the
input in order to seamlessly handle online handwriting with arbitrary sampling
quality as well as vector art in which only the sequential ordering of points may
be available. We also choose this approach with the future aim of combining
our method with one that recovers temporal information from bitmap images
such as the one presented by Plamondon and Privitera [1999]. We also argue
that – from a computer graphics perspective– the ability to represent curves
and traces through parameters that directly reflect the kinematics of a physi-
ologically plausible movement opens up many possibilities, such as (i) more
expressive rendering techniques, (ii) the generation of artificial variations that
reflect the ones that would be made by a human, (iii) artistically driven fairing
or beautification [Thiel et al., 2011; McCrae and Singh, 2009; Zitnick, 2013], as
well as (iv) potential applications in procedural content generation for movies
and games.

In the following sections, we summarise first our approach to identify curvi-
linear shape features or CSF (Section 2). We then describe the trajectory seg-
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mentation method (Section 3) based on CSF and Euler spiral fitting. In Section
4 we summarise the Sigma Lognormal (ΣΛ) model used to describe the mo-
tions of a pen-tip. In Section 5 we conside the recovery of ΣΛ parameters from
geometry only. In Section 6 we discuss some applications before concluding.

2. Curvilinear Shape Features

2.1. Background

The study of the curvature along a contour — being the trace of an object’s
boundary — has been the focus of decades of research in various fields, includ-
ing that of visual perception and cognitive science, as well as computer vision
and pattern recognition. Significant extrema of curvature (i.e. with associated
contour segments having a role of support) have been shown empirically to be
the most salient loci along piecewise smooth contours [Attneave, 1954; Feld-
man and Singh, 2005; De Winter and Wagemans, 2008] and to play an important
role in the perceptual decomposition of objects into parts [Richards and Hoff-
man, 1985; Brault and Plamondon, 1993b,a; De Winter and Wagemans, 2006].
Curvature also plays an important role in the study of human movement and
handwriting by relating the kinematics of a movement to its trace. It is well
known that tangential speed and curvature of human hand movements are in-
versely proportional [Viviani and Schneider, 1991] and this relation can take
the form of a power law [Viviani and Schneider, 1991; Plamondon and Guer-
fali, 1998]. Furthermore, curvature extrema are indicative of speed minima
and therefore useful for the segmentation of complex movements into simpler
primitives, for the study of traces in both the structural and kinematic domains.

A robust identification of curvature extrema from the curvature function
alone can be difficult as it requires the evaluation of a second order differential
quantity which tends to amplify the effects of noise in the input as an outcome
of the digitisation process. One popular method to overcome this problem is to
first smooth the digitised signal using a filter (e.g convolving with a Gaussian)
or interpolating with some analytic function (e.g. smoothing splines). How-
ever, smoothing risks removing perceptually important features of an outline
and choosing reasonable parameters remains a difficult task. To overcome this
fundamental issue, one possible avenue is to generate an intermediate scale-
space in which features are identified and tracked at different scales [Witkin,
1983]. Such a scale-space is very often produced by iterative Gaussian filter-
ing in the spatial domain, or via the frequency domain using wavelets [De Ste-
fano et al., 2005]. An alternative to such traditional filtering — which tends to
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blur away details, especially in the vicinity of corners with sharp changes in ori-
entation — is to use a structural notion of scale, e.g. by associating a support
metric along a contour with each curvature feature being tracked, such as when
performing morphological operations on the curvature function [Leymarie and
Levine, 1989]. Nevertheless, such methods operating directly on the curvature
function (along a contour) still suffer from poor localisation, and do not cap-
ture well singularities which can be perceptually significant, such as curvature
discontinuities which are typical of corner features.

An alternative to working directly with the curvature function is to exploit
the correspondence existing between symmetry axes and the curvature behav-
ior of a contour [Leyton, 1987]. Originally pioneered by Harry Blum in the 1960’s
for the study of biological shape [Blum, 1967], the Symmetry Axis Transform
(SAT) – also known as Medial Axis or simply “skeleton” for closed contours –
is a shape representation that provides a bridge between geometry and topol-
ogy. The SAT is commonly viewed as the set of centers of “maximally inscribed”
disks, or with the “prairie grassfire” or wave-front analogy, in which the symme-
try axes are given by the “quench” points at which fire fronts or waves propagat-
ing from the object boundary meet and stop expanding [Leymarie and Levine,
1992]. Variants of the SAT have also been widely used in pattern recognition ap-
plications, especially to extract topological and structural knowledge from the
outline of handwritten or printed characters [Li and Plamondon, 2006]. Con-
trary to a common misinterpretation, the SAT is not only defined for closed
shapes, but is valid also for open contours or even point samplings [Blum, 1973]
— in the latter case becoming similar to the Voronoi graph.

2.2. Our solution

In order to robustly identify useful curvilinear shape features, we exploit the
duality [Leyton, 1987] between the two representations of (2D) contour cur-
vature and SAT, which allows us to identify significant curvature extrema and
discontinuous breaks along a handwriting or drawing trace through the analy-
sis of its local symmetries. Each feature is paired with a corresponding contact
circle (near the extrema) and its support region — where curvature is approxi-
mately monotonic and in correspondence with a local symmetry axis. We then
exploit this intermediate representation to infer the kinematics of a movement
that reconstructs a likely trace.

We recall a result presented by Leyton which links the symmetry axes of
an object having a smooth bounding contour to its curvature extrema [Leyton,
1987]:
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Any segment of a smooth planar curve, bounded by two consecutive
curvature extrema of the same type, has a unique symmetry axis, and
the axis terminates at the curvature extremum of the opposite type.

Motivated by this concept,a given a symmetry axis, it is then possible to
identify and locate a curvature extrema near one axis end. In a traditional set-
ting, the SAT is computed at once for a given final contour or, as in our case, a
written trace. This however does not allow to identify all perceptually signifi-
cant curvature extrema, as part of a contour may forbid or mask the existence
of a symmetry axis that would otherwise end at a curvature break or corner,
or end at the center of curvature of the circular arc associated to a curvature
extremum.b Furthermore, data from contours or handwritten traces typically
are not smooth everywhere, and thus we need a solution which is adapted to
discrete samplings, possibly with sharp changes in orientation (corresponding
to a break in curvature for the equivalent continuous trace), as well as for open
contours (with ends).

Inspired by Leyton’s idea, we have explored the following discrete scheme,
as illustrated step by step, in Fig. 1: (i) we select a starting point either at one
end of an open contour or randomly along a closed contour; (ii) we traverse
the contour in one direction (until another end or until we come back to our
initial position); (iii) we initiate a local symmetry axis computation from the
sequential set of encountered trace samples (e.g. using a well established local
Voronoi method [Ogniewicz, 1992]) and identify a first local axis end; (iv) we
pursue the local axis reconstruction until we detect a new potential axis end —
this indicates the end of one curvilinear side of the associated region of support
— (v) we repeat the computation of a local axis for the new axis end, ignoring
old samples which are past the previously identified curvature extremum (i.e.
associated to the previously identified local axis end) — for this new axis end we
already know its first curvilinear region of support, and thus we keep refining
the local axis computation by visiting more contour samples, until we hit yet
another candidate axis end or run out of samples; (vi) the procedure repeats
until no more samples are left to consider.

In summary, a local symmetry axis is evaluated as one travels along a planar
contour, such as obtained from a written trace, denoted z(s), which is assumed
aLeyton’s result [Leyton, 1987] is restricted to smooth contours and to the description of so-called
"codons": contour segments delimited by a triplet of curvature extrema such that a pair of concav-
ities (convexities) delimit an intermediate convexity (concavity).
bOne way to prove this masking effect, is by considering the behavior of cusps of evolutes in relation
to a symmetry axis. Belyaev and Yoshizawa [2001] proved that an evolute cusp correspond with a
symmetry axis branch only when the segment going from the cusp to the associated curvature
extrema, does not intersect the remaining skeleton of the shape.
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(1) (2) (3)

(4) (6)(5)

(7) (8) (9)

Fig. 1.: Significant steps of computation of the swept symmetry axis. In cyan, the disks for the
extremities of the axes (red); in black the current contour segment. The small red circles are the
extrema. (1), the first step of the process. The contour segment is too short so there are no branches.
(2), a first branch appears (out of the figure) with the corresponding disk. The disk is unstable,
i.e. it tends to shrink and moves towards a curvature extrema. (3), the disk stabilises in proximity
of a curvature extrema. (4), a new axis appears; this triggers an event in which (5) the extrema
corresponding to the disk in (3) is marked and a new start point is set for the contour segment. The
new start point corresponds with the first anchor point of the newly appeared disk. The remaining
images show steps identical to (3, 4,5) which are repeated iteratively untill all significant symmetry
axes have been found. Note that in (9) a new symmetry branch appears, which will lead to the
identification of the subsequent axis and associated curvature extrema along the outline.
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(a)

(b)

Fig. 2.: (a) Four successive Curvilinear Shape Features (CSFs): Each CSF is defined by (i) a symmetry
axis, SAi , (ii) a contact circle, CC i , (iii) its corresponding circular arc, �CC i , part of the local trace,
(iv) a representative curvature extremum locus, zκmax

i , taken as the mid-point of �CC i (indicated

as red dots), (v) a pair of contour segments, [z l hs
i (s), zr hs

i (s)] delimiting the region of influence of
a CSF. Note that the third CSF (from the left) corresponds to a typical discontinuity in curvature,
a corner where their is a sudden change in orientation, and thus with a contact circle reduced to
a point which coincides with the curvature extremum locus. This is also indicated by having the
local symmetry axis reaching the input trace (z(s)). (b) Each pair of contour segments for each CSF
is emphasised: colored and slightly translated away from the original outline.

parametrised by arc length s.c Each significant axis is found,d such that its ex-
cIn practice, we sample, for example uniformly, the trace in a set of discrete points at approximately
equal distance from each other. Other (adaptive) sampling strategies are possible, e.g. in the pres-
ence of corners.
dSignificance is linked to the particular computation of symmetry axial structure; for the results
reported here, we rely on the well established parametric method of Ogniewicz [1992].
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istence ends once another significant axis emerges, and the previous written
trace already traversed is then "forgotten", so as to not mask other potential
extrema of curvature associated to later parts of the trace.

Definition 1 (Curvilinear Shape Feature (CSF)). Each CSF is composed of five
main elements (Fig. 2): (i) SAi , a computed significant symmetry axis, (ii) CC i ,
a contact circle centered at the initial tip of a given SAi , (iii) åCC i , the associ-
ated circular arc overlapping with the contour trace, (iv) zκmax

i , the associated

curvature maximum locus, which we take as the mid-point of åCC i ,e (v) [z lhs
i (s),

z r hs
i (s)], a pair of contour segments on each side of åCC i . The index i indicates

one of NC SF computed CSF: 1 ≤ i ≤ NC SF .

We note that each SAi is not necesarilly part of the classic Blum medial axis
set, nor the Voronoi graph; rather, it is always part of the Full Symmetry Set as
defined in singularity theory [Bruce and Giblin, 1992]. Furthermore, a given
arc, åCC i , may vanish in size when coinciding with a break of curvature or sharp
corner tip, becoming identically zκmax

i . We also emphasise that this definition
of a CSF is more general than the older concept of a (contour-based) “codon”: a
triplet of alternate (in sign) curvature maxima (e.g. concave, convex, concave)
[Richards and Hoffman, 1985].

3. Trajectory segmentation into circular arcs

The proposed trajectory reconstruction method exploits the prior feature anal-
ysis of the input z(s) (Section 2), and thus takes as its input the set of computed
Curvilinear Shape Features (CSF) which identifies a set of contact circles, CC i ,
circular arcs, åCC i , curvature extremum loci, zκmax

i , and pairs of contour seg-
ments, [z l hs

i (s), z r hs
i (s)], while the corresponding axial branches, SAi , are ig-

nored — their essential role in our method being in identifying the other items.
On the basis of this information, our goal is then to segment the entire trace,

z(s), with a series of best fitting circular arcs. The reason being that circular arcs
can be directly exploited by the kinematic analysis based on the Sigma lognor-
mal modelling (to be described in the following sections 4 and 5). To obtain a
trajectory segmentation in terms of a series of circular arcs, we start from the
set åCC i and then propose in what follows a systematic method to approximate
the remaining parts of the trace (given by the set of pairs [z lhs

i (s), z r hs
i (s)]) in

two steps: (i) first by tightly fitting Euler spiral segments, and then (ii) mapping

eAlternatively, zκmax
i can be taken as the projection of SAi intersecting the contour trace, a defini-

tion closer to the spirit of the work of Leyton [1987].
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each Euler spiral segment to up to four best fitting circular arc(s), as a function
of the presence of an inflection along the spiral segment and the angular extent
of each arc.f

Fig. 3.: An Euler spiral, its inflection point (circle) and a Euler spiral segment (black).

3.1. Euler spiral fitting

Euler spirals (also known as Cornu spirals, or clothoids) [Levien, 2009] are a use-
ful type of curves in which curvature varies linearly with arc length, permitting
the description of variably curved segments which may contain an inflection
(Fig. 3). An Euler spiral is commonly parameterised by arc length using the
cosine (C (t )) and sine (S(t )) Fresnel integrals:

C (t ) =
∫ t

0
cos(u2)du , S(t ) =

∫ t

0
sin(u2)du . (1)

Such that the Euler spiral is obtained as:

q(t ) = (x(t ), y(t )) = (C (t ),S(t )) , (2)

where t can vary from minus infinity to plus infinity, and where the origin (0,0)
corresponds to t = 0 which is the inflection point for the spiral; note that t is
then identically the (signed) arc length parameter for the spiral curve. In our
application, an Euler spiral segment to be fitted to the data is defined between
an initial (t = t1) and final (t = t2) parameter values. If the values alternate
in sign, then we have a segment with an inflection (at t = 0). Such a segment
can be conveniently computed and sampled in an efficient manner using an
approximation method developed by Heald [1985], which results in n samples
along the segment from q(t1) and q(t2).

In order to fit an Euler spiral segment to one of the segments from our input
trace, we first compute approximate tangent directions along the trajectory, for
a given segment, z i (s), i.e., in correspondence with the initial and final points of
the segment under examination. This allows to rapidly compute a first estimate

fOur use of Euler spirals is also inspired by the work of Leyton who studied contour regions between
curvature extrema of opposite sign by using "bi-spiral" segments [Leyton, 1987].
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of the spiral segment’s initial and final parameter values using a secant method
described by Levien [2009].

However, the tangent estimates are likely to be unreliable in the presence
of noisy input data, and thus we proceed to refine this initial fit with a least
squares optimisation based on the classic Gauss-Newton method. Our method
consists then in three additional steps. First, we linearly transform the given
trace segment, z i (s), such that its end points match those of the computed spi-
ral segment in its canonical form. Second, we modify the canonical form of the
Euler spiral, by introducing a scaling factor α and a rotation by an angle ω (in
radians) with:

q(t ) =
[
αcos(ω)C1(t )−αsin(ω)S1(t )
αsin(ω)C1(t )+αcos(ω)S1(t )

]
, where (3)

C1(t ) =C (t )−C (t1) and S1(t ) = S(t )−S(t1). (4)

Note that the (initial) canonical form is for α = 1 and ω = 0. Third, and finally,
we proceed with the minimisation:

min
t1,t2,α,ω

1

2

n∑
j=1

∥ q[ j ]− z i [ j ] ∥2 , (5)

where q[ j ] and z i [ j ] both denote n equally spaced samples with a sampling
index [ j ], in the former case for the spiral segment q(t ) between t1 and t2, and
in the later case along the input trace segment z i (s).

3.2. Inflections and final circular arc decomposition

The presence of inflections can easily and robustly be identified by checking
the signs of the two spiral parameters t1 and t2. With alternate signs, t = 0
gives the inflection position. For each potential inflection, we then check if the
ratio [min(|t1|, |t2|)]/|t1−t2| is less than a user defined threshold ε f lex (which we
empirically set to 0.2 in the accompanying examples), in which case we discard
it as a near degenerate case, the inflection being very close to one spiral’s end
point.

Depending on the presence of an inflection, we fit either one or two cir-
cular arcs to each Euler spiral segment. A final simple refinement step is then
executed by considering the angular extent of each computed arc. For relatively
wide arcs, we split these in two halves. The heuristic used here being that arcs
should not be too wide such that the later computation of the kinematics con-
verges more easily.

The internal angle of any circular arc derived from Euler spiral segments is
easily estimated by integrating the curvature of the spiral and distinguishing
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between three cases: (i) For the case of two arcs separated by an inflection, the
pair of internal angles are given by t1 × |t1| and t2 × |t2| (Fig. 4.(a)). (ii) In the
case of a degenerate inflection, we use the same method to fit a single arc and
choose only the parameter with the greatest absolute value and consequently
higher curvature. (iii) When no inflection is present the internal angle is given
by: |(t2 ×|t2|− t1 ×|t1|)|× sgn(t1). In each of these three cases, and for each arc,
we then check if the absolute internal angle is greater than (3/4)π — heuristi-
cally set, so that no derived circular arc is close to half a circle, similarly to Li
et al. [1998] — in which case we further subdivide such a wide arc in two halves
(Fig. 4.(b)).

(a)

(b)

Fig. 4.: Decomposing Euler spirals (stippled cyan) into arcs. (a) two arcs delimiting an inflection.
(b) one segment with internal angle > (3/4)π divided into two equal arcs.

In summary, we have that the trace is now represented by a sequence of
NC SF contact circular arcs, åCC i , with intermediate Euler spiral segments each
with or without an inflection. Each spiral segment is then mapped to either a
pair of arcs (with a separating inflection) or a single arc. Each such circular arc
derived from a spiral may then be further split in two if wide enough. A little
inspection shows that, in the case of a closed trace (no endpoints), we have a
maximum of 5×NC SF circular arcs fitted, while for an open trace (with a pair of
endpoints) the maximum is NC SF +4×(NC SF +1). Fig. 5.(a) shows the results of
(i) identifying (here, five) curvature maxima, zκmax

i , followed by (ii) fitting (five)
Euler spirals, and (iii) finding (two) inflections and corresponding circular arcs.
This approximate reconstruction of the original trajectory in the form of circu-
lar arc segments, is related to the method originally proposed by Li et al. [1998],
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but with the following main three differences: (i) We have found experimentally
that our method to identify curvature maxima is more robust — in particular as
it does not rely on an explicit a priori estimation of the curvature signal. (ii) We
use Euler spirals to fit intermediate data which gives a simpler and more robust
method to identify inflections. (iii) We explicitly obtain contact circle arcs, �CC i ,
which results in a more accurate reconstruction of the original trace (Fig. 5).

This representation of the input trace, z(s), as a series of circular arcs, is now
ready to be exploited (in §5) together with the Signal Lognormal model which
we first summarise in the next section.

Circles

Circle arcs

Inflections

(a) (b)

(c) (d)

Salient points

Osc. circle

Input

Spirals

Contact region

Fig. 5.: Sample “R” character from the UJI handwritten character dataset [Llorens et al., 2008]. (a)
Significant curvature maxima, zκmax

i . (b) Euler spiral fitting; and (c) circular arcs decomposition,

where the arcs in red indicate the contact circular arcs, �CC i . (d) Demonstrative example of least-
squares fitting of circular arcs to the segments defined between (the same) consecutive curvature
maxima, zκmax

i . Conclusion: Not considering the contact region results in a much less precise
reconstruction of the input.
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4. The Sigma Lognormal (ΣΛ) Model

On the basis of the Kinematic Theory [Plamondon, 1995], we study handwriting
and drawing movements via the the Sigma Lognormal (ΣΛ) model [Plamondon
et al., 2014], which describes complex trajectories on the plane via the vectorial
superimposition of NS time shifted stroke primitives.

Each stroke is described as an aiming drawing gesture, and the sequence of
strokes is modelled by a scaffold-like action plan, starting from an initial posi-
tion, and defining a curvilinear graph made of vertices as aiming positions with
connecting circular arcs. The integration of the ΣΛ along this scaffold provides
for a drawing engine where variations of parameters give different possible (but
related) approximating traces, more or less smooth, more or less reaching the
various aiming vertices (aka “virtual targets”, Fig. 6). We summarise the main
algorithmic elements of the ΣΛmodel in the remaining of this section.

The velocity function of each stroke is given by a classic lognormal function:

Λi (t ) = 1

σi
p

2π(t − t0i )
exp

(
− (ln(t − t0i )−µi )2

2σi
2

)
, (6)

which characterises the impulse response of each stroke to a centrally gener-
ated command occurring at time t0i . The parameters µi and σi represent the
stroke delay and response time in a logarithmic scale; they also determine the
shape and asymmetry of the lognormal profile.

4.1. Circular arc assumption

An important practical assumption is typically made when initiating the ΣΛ
model: handwriting movements are mostly made with rotations of the elbow
or wrist. The corollary is then that the curvilinear evolution of a drawing stroke
can be approximated by a circular arc. This has for consequence to simplify the
computation of the angular evolution of a stroke by using the time integral of
equation (6):

wi (t ) =
∫ t

0
Λi (u)du = 1

2

[
1+erf

(
log(t − t0i )−µi

σi
p

2

)]
, (7)

which results in

φi (t ) = θi − δi

2
+δi w(t ) , (8)

such that θi is the direction of the stroke and δi is the stroke curvature parame-
ter which determines the internal angle of the assumed circular arc.
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The planar pen-tip velocity is then calculated with:

ẋ =
N∑

i=1
D̂iΛi (t )cos(φi (t )) and ẏ =

N∑
i=1

D̂iΛi (t )si n(φi (t )) , (9)

where D̂i = Di h(θi ) is the length Di of the stroke scaled by:

h(θi ) =
{

δi
2sin(δi /2) if |sinθi | > 0 ,

1 otherwise ,
(10)

which compensates for the stroke curvature based on the ratio between the
perimeter and the chord length of a circular arc. The acceleration components
of the lognormal trajectory are then given by [Plamondon and Guerfali, 1998]:

ẍ =
N∑

i=1
D̂i Λ̇i (t )cos(φi (t ))− D̂iδiΛ

2
i (t )sin(φi (t )) , (11)

ÿ =
N∑

i=1
D̂i Λ̇i (t )sin(φi (t ))+ D̂iδiΛ

2
i (t )cos(φi (t )) , (12)

with

Λ̇i (t ) =Λi (t )
µi −σ2

i − log(t − t0i )

σ2(t − t0i )
, (13)

which allows us to compute the curvature function at time t with the classic
formula from differential geometry:

κ(t ) = (ẋ ÿ − ẏ ẍ)/(ẋ2 + ẏ2)3/2 . (14)

Given equation (7) the planar displacements along the ΣΛ trajectory can
then be computed using the error function and thus not requiring the numeri-
cal integration of equation (9), which simplifies to:

x =
N∑

i=1

{
D̂i
δi

(sin(δi w(t )+θi −δi /2)− sin(θi −δi /2)) if δi > 0 ,

D̂i wi (t )cosθi otherwise ,
(15)

y =
N∑

i=1

{
D̂i
δi

(cos(δi w(t )+θi −δi /2)−cos(θi −δi /2)) if δi > 0 ,

D̂i wi (t )sinθi otherwise .
(16)

4.2. Targets

The previous pair of equations for displacement give us a way to efficiently
compute a new position, sl t (t ), at a given time t from an initial position p0:

sl t (t ) = p0 + [x, y]T. (17)
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Fig. 6.: Left: Lognormal trajectory (in black) with the corresponding action plan (targets as red
dots, and scaffold of circular arcs as dotted red curves. Right: The corresponding speed profile with
different time overlaps between lognormals.

The initial sequence of curvilinear strokes describes an action plan con-
sisting of the initial position p0 followed by a sequence of NS targets p1, . . . , p NS

each corresponding to an aiming locus per stroke (Fig. 6, Left).
The degree of time overlap between lognormal components is used to char-

acterise the degree of smoothness of the trajectory in correspondence with
each target, where a greater overlap results in a smoother trajectory (Fig. 6,
Right). In order to facilitate interactive applications [Berio et al., 2017b] and
to simplify the subsequently described parameter reconstruction method, we
compute the directions θi and length Di for all NS pairs of consecutive targets
(p i−1, p i ). Furthermore, we explicitly define the time overlap of each lognormal
through an intermediate parameter ∆ti ∈ [0,1] where t0i = t0i−1 +∆ti sinh(3σi )
for i > 1 and t01 = 0.

5. Iterative Reconstruction of ΣΛ parameters

Having introduced the essential elements of the ΣΛ model in the previous sec-
tion, and given the earlier trajectory segmentation derived from identified CSFs
(§2) and circular arcs derived from Euler spiral fitting (§3), we have the nec-
essary information to describe how we reconstruct the input trajectory with
an approximate associated kinematics given only information about its (static)
sampled geometry. Hence, we will be able to seamlessly process on-line hand-
writing data as well as vector art in which only the sequential ordering and co-
ordinates of trace samples is required. The method is a development and im-
provement over our prior efforts [Berio and Fol Leymarie, 2015; Berio et al.,
2017a]. We re-emphasise that, although a number of methods exist for the ac-
curate reconstruction of ΣΛ parameters from digitised traces [O’Reilly and Pla-
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mondon, 2008; Plamondon et al., 2014; Fischer et al., 2014], these require as
input the kinematics of the original trajectory.

5.1. Initialisation: Features, Strokes, Initial Targets

The initial set of aiming targets (aka “virtual targets”) consists of three types of
feature points, or features for short: from CSF analysis (i) recovered curvature
maxima loci, zκmax

i , and from Euler spiral analysis (ii) inflections, and (iii) splits
(of wide angled circular arcs). We can either directly used these loci or find their
nearest neighbors, z(ŝi ), on the original input trace, z(s), which leads to slightly
more accurate reconstructions. We follow the later approach in results reported
thereafter.

The initial set of NS strokes is defined from only those circular arcs derived
from the Euler spiral segment fitting; i.e. we do not generate strokes for each
contact circular arc, åCC i , associated to each zκmax

i . We have found experimen-
tally that if we include strokes for such arcs and compute trajectories via theΣΛ
model we easily overshoot the original trace, z(s), in the vicinity of each zκmax

i .

Also, removing these contact circular arcs, åCC i , from the ΣΛmodeling gives us
more flexibility in aiming at curvature maxima loci when generating smooth
variants (using equation (17)), and also it reduces the overall possible number
of strokes considered.

However, the set åCC i can be used for defining stopping criteria for our iter-
ative scheme, as defined below. Intuitively, as a generated trace, sl t (t ) aims
at reaching towards a curvature maximum locus, zκmax

i , we can stop locally
pulling in that direction once the generated equivalent curvature maximum lo-
cus enters a zone such as the angular sector defined by a åCC i or even as it enters
the interior of the contact circle itself, CC i .

The used circular arcs — all derived from Euler spiral segments — give us a

set of internal angles θ̂i
NS
i=1, centers c(θ̂i ) and radii r (θ̂i ). The circular arcs are

delimited by NS feature points {ŝi }NS
i=1, plus additional starting and end loci if

modeling an open trace (with endpoints, p0 and p NS+1
). If modeling a closed

trace, we randomly pick one feature point as both the start and end positions.
An initial estimation of the trajectory parameters is given by a target se-

quence p i = z(ŝi ), stroke curvature parameters δi = θ(ŝi ) and time overlap
parameters ∆ti = 0.5. For the sake of simplicity, we consider the remaining
parameters σi and µi as typical properties of the neuromuscular system of a
writer and keep these set to a user configurable value. The initial trajectory es-
timate is likely to differ from the original, z(s), and to be much smoother due to
the inital lognormal stroke overlap (Fig. 7.(a)).
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(a) (b) (c)

Fig. 7.: ΣΛ parameter reconstruction using features from CFSs and Euler spiral derived arcs. (a)
First guess (in black) of the stroke parameters and action plan from features. (b) Reconstruction
of the input after iterative refinement steps. (c) Iterative refinement steps. The initial action plan
has targets corresponding with the features along the input (large red circles). At every iteration,
the targets are shifted (small blue circles) in order to reduce the distance between keys along the
generated trajectory (cyan circles) and the features of the original trace.

5.2. Iterative scheme: Keys, Max speeds, Moving Targets

To improve the reconstruction, we adopt an iterative refinement scheme (Fig.
7) in which we adjust the curvature and time overlap parameters together with
the target positions in order to minimise the difference between the recon-
structed, sl t (t ), and original, z(s), trajectories. At each iteration, we rely on
the estimation of a series of key points, or keys for short, which approximate the
initial feature point loci. We compute NS keys {τi }NS

i=1 along the trajectory (Fig.
8) where τ1, . . . ,τNS indicates the time occurrence at which the influence of one
stroke exceeds the previous one and the generated curvature is locally maxi-
mal, while τ0 and τNS+1 are the starting and ending time of the trajectory. To
compute the keys, we intersect the scaled profiles of consecutive stroke pairs,
using an iterative or Newton scheme, by solving:

D̂iΛi (t )− D̂i+1Λi+1(t ) = 0 .

In addition, we compute NS maximum speed points, or max speeds for
short, {γi }NS

i=1, which indicate the time occurrence of the maximum speed for
each stroke (Fig. 8); this is explicitly obtained by the mode of the correspond-
ing lognormal: t0i +exp(µi −σ2

i ).
The iterative refinement scheme was designed based on three observations:

Observation 1. The time parameter ∆ti is proportional to the curvature κ(τi )
at the time of the corresponding key point. Thus, a higher value of ∆ti will
decrease the amount of overlap of successive lognormals. This will result in a
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Fig. 8.: Keys (orange circles) and max speeds (red crosses) overlaid on the trace (a) and speed profile
(b) of a trajectory with two strokes.

lower speed and higher curvature κ(τi ) at the time occurrence of the key. Since
we have a good approximation of the curvature κ(ŝi ) in the original trajectory,
the relation between the two can be exploited in order to adjust ∆ti proportion-
ally at each iteration. We observe that changes in ∆ti are not linearly related
to changes in the curvature κ(τi ) at the corresponding key. In order to com-
pensate for this, we assume a 1/3 power relation [Viviani and Schneider, 1991]
which has often been observed in human movement and particularly holds for
elliptical portions of the trajectory [Plamondon and Guerfali, 1998], which is
often the case near keys. The reasoning is that given the relations

∆t ∝ κ and ∆t ∝ 1/v ,

where v denotes speed, we have the proportions relating desired and generated
curvature and velocity:

ρκ = κ̂/κ and ρv = v̂/v .

As a result, given the power law [Viviani and Schneider, 1991] v = κ−1/3 and
because velocity and ∆t are inversely proportional, we finally get the relation:

ρκv = v/v̂ = (κ/κ̂)−1/3 = (κ̂/κ)1/3 .

Observation 2. Moving targets play a role similar to control points in spline
analysis. Shifting a target p i in a given direction will cause the generated key
sl t (τi ) to move in a similar direction. As a result, shifting the target p i along the
vector z(ŝi )− sl t (τi ) will decrease the distance between successive generated
keys and original features (Fig. 7.(c))..
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Observation 3. The distance Di between successive targets p i and p i−1 will
influence the curvature of the resulting stroke. Augmenting this distance will
increase the radius of curvature of the circular arc defined by the parameter δi

and will result in a decrease of curvature for the stroke. While the trajectory
tends to depart from the circular arc near the keys at t = τi due to the smooth-
ing effect of the lognormal time overlap, it tends to pass closer to the circular
arc at t = γi where the amplitude of the lognormal is maximal. As a result, we
use this locus to evaluate the deviation from the desired arc θ̂i and correct the
parameter δi accordingly.

As a result of these observations, we define each iteration of our method to
consist of the following ordered steps:

∆ti ←∆ti +λ∆(ς(∆̂ti ,∆tmi n ,∆tmax )−∆ti ) , (18)

δi ← δi +λδ(δ̂i −δi ) and (19)

p i ← p i +λp (z(ŝi )− sl t (τi )) . (20)

Here λ∆, λδ and λp are damping parameters that we experimentally tune to
0.1 and 0.1 and 0.5 to avoid excessive adjustments at each iteration. The target
time offset parameter for each iteration is computed by assuming a 1/3 power
relation to curvature and is given by

∆̂ti = ς
(
(κ(ŝi )/κ(τi ))1/3 ,∆t−,∆t+

)
, (21)

which is restricted to a user specified range [∆t−,∆t+] by using a sigmoid func-
tion ς. We observe that this restricted range improves convergence of our
method and permits to apply smoothing effects to the trajectory during the re-
construction step (examples in §6).

The desired internal angle of an arc is given by:

δ̂i = 4tan−1
[

h

a
tan

(
δi

4

)]
with (22)

a =∥ p i −p i−1 ∥ and (23)

h = (
r (θ̂i )− ∥ p(γi )−c(θ̂i ) ∥)sgn(θ̂i ) , (24)

where the term h determines the amount to shift the curvature parameter δi

by comparing the radius of the circular arc θ̂i , initially fitted to the input, to the
distance between its center and the lognormal max speed point p(γi ).

5.3. Stopping Criteria, SNR

A few different stopping criteria for the iterative scheme are possible, depend-
ing on the user needs. The simplest — and most practical for experimenting
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with the approach — is to let the user define an overall maximum iteration.
Other more sophisticated criteria we have experimented with include: (i) let
keys reach each associated CC i or åCC i ; (ii) minimise the overall distance be-
tween the generated, sl t (t ), and the input, z(s), traces, by either selecting a
threshold value or letting the algorithm reach a local minimum; (iii) optimise
the quality of the reconstruction by maximising an error criterion such as the
SNR (defined next). We have found in practice the latter SNR-based criterion
gives a good compromise between reconstruction quality and computational
complexity.

Because we do not take into consideration the kinematics of the input, we
evaluate the quality of the reconstruction using the Signal to Noise Ratio (SNR)
computed between the reconstructed and input trajectory. While this could be
done by uniformly sampling the two trajectories at a constant distance step,
this will result in a propagation of errors along the reconstructed trajectory,
which leads to unreliable SNR measurements. To overcome this problem, we
exploit our initial estimation of features z(ŝi ) in the input and the segmenta-
tion given by the keypoints τi of the reconstructed trajectory, sl t (t ), and uni-
formly sample m segments for the original and generated trajectory, where the
j th point for the i th segment are respectively denoted as z i , j and p i , j and the
mean of an input segment is denoted by z̄ i . The trajectory SNR is then:

SN R = 10log10

∑
i
∑

j
(
z i , j − z̄ i

) · (z i , j − z̄ i
)

∑
i
∑

j

(
z i , j −p i , j

)
·
(

z i , j −p i , j

) , (25)

which trivially generalises to the case of multiple disconnected trajectory seg-
ments, such as when the writer lifts-up their pen or brush.

We tested the iterative refinement on different inputs ranging from vector
traces with no a priori kinematic information (Fig. 9), to online data — includ-
ing the Graffiti Analysis database [F.A.T. Lab, 2009] (Fig. 10 and Fig. 11) and the
UJI handwritten character dataset [Llorens et al., 2008] (Fig. 7) — and it con-
sistently produces visually accurate reconstructions of the input. We observe
that, while fluctuations may appear during iterations, the refinement scheme
consistently and rapidly converges towards a reduction of the error between the
input and the generated trajectories and an increase in SNR (equation (25)).

The iterative scheme can be applied in a batch manner, in which all the ΣΛ
parameters for all strokes are updated at each iteration, or similarly to the iDe-
Log framework [Ferrer et al., 2018] by traversing the trajectory in an incremen-
tal manner and adjusting pairs of strokes ordered in time. In our experiments
both approaches present similar convergence properties and produce recon-
structions with similar SNR.
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(a)

Arcs
Virtual targets
Original
Sigma Lognormal

(b)

Fig. 9.: Reconstruction of vector input initially built with piecewise Bézier curves. Our method
reconstructs the (originally only guaranteed to be C 0 continuous) input with smooth kinematics
given by the ΣΛ model. (a) First guess of the parameters from features. (b) Reconstruction of the
input after iterative refinement steps.

6. Discussion and Applications

The reconstructed ΣΛ parameters provide a concise and easily manipulable
representation of a geometric trace. This can be exploited in a number of ap-
plications that are relevant to our desired use cases in CAD [Berio et al., 2017b]
and procedural content generation [Berio et al., 2017a]. We list a few such ap-
plications in the remaining of this section.

6.1. Artificial Variability

The ΣΛ model directly reflects the characteristics of a smooth human move-
ment at the planning (targets and scaffold) and neuromotor level (the remain-
ing parameters). We therefore expect and observe that parameter perturba-
tions result in variations of a trace that are similar to the one that would be seen
in multiple instances of handwriting or drawing made by one or more subjects
(Fig. 12). This property has been exploited to create artificial data for handwrit-
ing recognizers [Fischer et al., 2014], signature verifiers [Galbally et al., 2012;
Diaz-Cabrera et al., 2018], gesture graphical input [Leiva et al., 2017, 2016], and
can be used for artistic oriented applications as well [Berio and Fol Leymarie,
2015; Berio et al., 2017a]. For such a task, it is convenient to apply perturbations
at the level of the intermediate parameters ∆ti and δi and (explicitly defined)
target positions p i , which avoids the excessive distortions that we observe by
directly perturbing relative angles and displacements as defined in the original
formulation of the model [Plamondon et al., 2014].

In our experiments, when perturbing targets, we have found that applying
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(a) (b)

(c)

Fig. 10.: Reconstruction of a graffiti signature "JANKE" from the Graffiti Analysis database [F.A.T.
Lab, 2009]. (a) The reconstructed trajectory, subdivided into segments for comparison (color
coded), overlaid on the original trace (light grey). The short grey segments mark the errors and
correspondences between uniformly distanced samples for each trajectory segment. (b) Plot of the
SN Rt for each iteration of the iterative optimization scheme. (c) The speed profiles of the original
(light grey) and reconstructed (dark grey) trajectories, scaled for comparison.

the perturbation with a variance inversely proportional to the temporal overlap
parameters ∆ti (Fig. 12, top left) improves the legibility of the variations. This
corresponds to imposing a higher precision requirement at trajectory locations
with higher curvature, locations that are known to be the most informative of
a trace/contour [Feldman and Singh, 2005]. From a motor control perspective,
this is effect is consistent with the “minimum intervention principle” [Todorov,
2004], suggesting that human movement variability is higher where it does not
interfere with the performance required for a task.

6.2. Smoothing and Stylisation

Another application of the ΣΛ parametrisation is to perform kinematic
smoothing of a given trajectory. The result is a method that bears similari-
ties to computer graphic approaches for curve fairing or neatening [Thiel et al.,
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Fig. 11.: Additional examples of graffiti tag [F.A.T. Lab, 2009] reconstruction together with the cor-
responding SNR plots.

2011; McCrae and Singh, 2009] as well as curve stylisation approaches [Lang
and Alexa, 2015; Lu et al., 2012]. In particular, the Euler spiral decomposition
step of our reconstruction method is similar to a few previously proposed meth-
ods [Baran et al., 2010; McCrae and Singh, 2009], which exploit the decomposi-
tion of an input curve into Euler spiral segments to remove discontinuities and
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Fig. 12.: Parametric variations of a reconstructed graffiti instance from the Graffiti Analysis
database. Top left, the original reconstruction (black trace) overlaid with 30 variations. Note that
variability is higher in proximity of smooth segments of the trajectory. The remaining traces are
randomly perturbed samples, with the corresponding (perturbed) action-plan in red.
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guarantee second order (C 2) continuity in the output. In our case, we instead
rely on the properties of the ΣΛmodel, which ensures the resulting reconstruc-
tion is smooth and infinitely differentiable (C∞).

(a)

(b)

(c)

(d)

Fig. 13.: Comparison of smoothing and stylisation methods. Row (a), smoothing by global scaling
of the time offset parameters ∆ti . Row (b), smoothing by using the parameter α to interpolate be-
tween the ΣΛ parameters of two reconstructions with different values for ∆t+. Row (c), stylisation
effects achieved by interpolating between the ΣΛ parameters of two reconstructions, where the
second is performed with user specified values of δi . Row (d), effect of different powers of α= 0.75
used to interpolate the virtual target positions between the two reconstructions used in row (b);
The examples in row (b) and (c) use a power of 7.

Another method to smooth the generated trajectory is to simply scale the
∆ti parameters (Fig. 13.(a)). However, this quickly and coarsely simplifies the
original trace — similarly to the smoothing effect of a convolution with a large
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mask — and can even result in a loss of structure and legibility. One method to
mitigate this undesirable effect is to run a second instance of the iterative re-
finement procedure with a lower value of ∆t−,∆t+. As a result, we can achieve
a smoothing effect while still preserving the structural similarity of the input,
as provided by the original features. Variable degrees of smoothing can then be
achieved by interpolating the ΣΛ parameters between the original reconstruc-
tion and the smoothed one with a parameter α ∈ [0,1] (Fig. 13.(b)).

More flexible stylisation effects can also be achieved with a similar ap-
proach, for example by constraining all stroke curvature parameters δi to a
user-specified value (Fig. 13.(c)) and then running the iterative refinement with
λδ = 0, hence not further affecting the parameters. While we use linear interpo-
lation for the parameters ∆ti ,δi , we observe that these are not linearly related
to the target positions. While this relation deserves further analysis in future
studies, we achieve satisfactory results by specifying a power of α for interpo-
lating targets (Fig. 13.(d)) and observe experimentally that a power of 7 works
particularly well for our use case (Fig. 13.(b), (c)) .

6.3. Expressive Rendering and Interaction

The smooth kinematics produced by theΣΛmodel can be exploited to generate
expressive brush renderings of the trajectory. This has been explored in previ-
ous work to generate realistic renditions of signatures [Ferrer et al., 2015] using
a model of ink deposition model [Franke and Rose, 2004]. Here we demonstrate
a brush model that builds upon the assumption that the amount of paint de-
posited is inversely proportional to the speed of the drawing tool. Furthermore,
we can sweep a texture along the generated trajectory with width also inversely
proportional to speed — refer to Berio et al. [2018] for mathematical and im-
plementation details. While this is a simplistic model, it generates patterns that
are highly evocative of some instances of calligraphy as well as graffiti made
with markers or spray paint (Fig. 14), and accentuates the perceived dynamism
of the trace.

The trajectory generated by the reconstruction, as well as the brush render-
ing parameters can be edited in real time with an intuitive user interface [Berio
et al., 2018]. This allows a user to fine tune the rendering results or to apply
subsequent modifications to the trajectory by editing the target positions and
the stroke parameters through a CAD-like interface. Furthermore, the result-
ing kinematics reproduce natural human-like movements that can be exploited
to create stroke animations of the input as well as to generate smooth motion
paths for virtual characters or even humanoid robots [Berio et al., 2016].
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Fig. 14.: Examples of, on the left, a real graffiti textured over a wall and, on the right, one rendered
with kinematics based brushes.

7. Conclusion

In this chapter, we developed and explained a systematic method to recon-
struct ΣΛ parameters from solely the static geometric trace (left by handwrit-
ing or drawing gestures), which relies on an initial segmentation at perceptually
salient points. The method is capable of producing an accurate geometric re-
construction of the input, while inferring plausible kinematics underlying its
generation on the basis of just an ordered sequence of points as an input.

We achieved our goal of a plausible reconstruction of the kinematics by de-
signing a method exploiting a notion of Curvilinear Shape Features (or CSF)
to incrementally adjust the temporal and spatial parameters of the ΣΛ model.
The method consistently produces accurate (> 15Db SNR) reconstructions of
the input, while providing flexibiltiy for the use of additional constraints that
can be exploited in order to generate interactive stylisations and variations.

One possible line of extension of our work is to exploit the availability
of higher order derivatives of the ΣΛ model to develop solutions using con-
strained optimisation methods with stronger convergence guarantees. Another
interesting future line of work is to develop more sophisticated methods of fix-
ing the ΣΛ parameters µi and σi , which are currently experimentally set and
kept constant. This shall require to explore in depth how the inferred kinemat-
ics relate to human data and are perceived by human observers.
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