
The Elusive Low Level
Graham White 1

Abstract. We start with a example of assembler programming, and
show how even at this low level the structure of the programming
language does not directly mirror the structure of the hardware, but
that it is also decisively influenced by the human practices surround-
ing computer use. We give several historical examples and illustrate
the changing pattern of mutual accommodation between human prac-
tices and computer technology.

1 Introduction: Three Surprises
We are told – in fact, if, like me, “we” teach computer architecture,
we tell people – that computer languages can be either high level
or low level, and that the low level ones, specifically the various as-
sembly languages, all reflect more or less directly the configuration
of the hardware. So it comes as a bit of a shock when we get to
know a particular assembly language – I am thinking specifically
of MIPS32 [15] – and we write programs which are sequences of
instructions, and we are tempted to believe that the hardware will
execute the instructions in the order that we write them in, but no:
if there is a branch instruction, which tells the computer, depending
on the equality or otherwise of two numbers, to resume execution
from some other instruction it will not execute the branch right then
but only when the instruction after the branch has been executed [7,
A-59]. (This is because a branch takes a comparatively long time to
execute, so the computer might as well have something to get on with
while it does so).

So that, then, is surprise 1. Now generally people learn assembler
by working on a simulator, rather than by actually executing the code
on the appropriate hardware: and surprise 2 is that, with the simula-
tor,2 you have a choice of whether it gives you this rather unintuitive
behaviour or not. So you can choose between a simulator which sim-
ulates the hard-to-learn behaviour of the real hardware, or the some-
what easier behaviour of fictitious hardware. Clearly the question of
“what is the real hardware”, or “what is the real low level”, is not as
straightforward to answer as we might like to think.

I shall be arguing in this paper that this phenomenon is quite typ-
ical: at the low level of assembly programming, you might expect
that human factors are rather minimally in play, if they are in play
at all, and that the programming language somewhat directly mirrors
what the hardware does. But not so: humans who work with com-
puters at this level are presented with a carefully achieved view of
what the hardware is doing, and it would be an oversimplification to
imagine that this view was a direct presentation of the hardware. To
some extent this is inevitable: modern computer hardware, and espe-
cially CPU chips, is extraordinarily complex, most of it is designed

1 Electronic Engineering and Computer Science, Queen Mary,
University of London, email: g.graham.white@gmail.com, url:
http://www.eecs.qmul.ac.uk/∼graham

2 Specifically, this one http://spimsimulator.sourceforge.
net/

by computer programs, and nobody can have any sort of overview of
what the CPU actually does. Furthermore, the behaviour of modern
computers is nondeterministic and chaotic, so that we cannot predict
their behaviour, at least in the short term. If you deal with this non-
determinism in its own terms (measuring the statistics of hard disc
access, caching and the like) then you are an electronic engineer and
not a computer scientist: Hennessy and Patterson [6] will give you a
good idea of what this entails.

But there is also a role for computer scientists, namely the people
who design and implement algorithms, design higher level program-
ming languages, database systems, and the like. For this, one needs a
rather more abstract view than the one given by electronic engineer-
ing. As it happens, the programming models that computer scientists
use (students, obviously, but also professionals) present computers to
them as something vaguely like Turing machines: however, in reality,
the computers themselves are not Turing machines, but something
much stranger.

What we have, then, is a system with three components: the human
designers and programmers, the hardware, and the software and as-
sembly languages that present a view of the hardware to the program-
mers. All three sides of this triangle are important. It is a system that
is constantly under strain, mostly due to the ongoing rapid progress
in technology coupled with the rather stable nature of programming
language design. Consequently, the picture that emerges is of con-
tinuous frantic improvisation in order to present the same (or nearly
the same) view to the programmers while the underlying hardware
is constantly in flux. Currently, there is a great deal of action around
multicore processors, concurrency, and caching: these are hard is-
sues, but dealing with them is probably they key to having models of
modern computers that humans can, in some way, program.

Which brings us to Surprise 3. We might like to think that the
sophisticated intellectual background behind modern programming
languages took a long time to arrive, just as it took a long time to get
from small, old, slow hardware to modern, fast, capable hardware.
But, as we find from [10], a great deal of that intellectual infrastruc-
ture was in place very early, by the 50s or early 60s at least.

1.1 Methodology
There will be a large historical component to this argument, and
for the historical facts I shall be mostly relying on Mark Priestley’s
PhD thesis [10]. My own methodology, however, will deviate some-
what from Priestley’s: I shall be influenced by ethnomethodology,
although I will not be using ethnomethodological methods, and I
will view the members of the relevant community as engaged in a
constant process of, in Garfinkel’s words, achieving and sustaining
their practices of programming and their interactions with each other
when they talk about programming and language design. I shall rely
to some extent on textbooks for an account of the community view
of particular technologies: in particular, I shall rely on Hennessy and

Patterson [7] for an account of the current state of hardware and of
good practice in assembly programming.

I shall take it that programs are written in order to implement al-
gorithms, and that, correspondingly, they have a semantics: integer
variables in a program will correspond to integers in the algorithm,
and, depending on the algorithm, they can be updated, become the
arguments of arithmetical expressions, and so on. This semantics is
not straightforward to define formally (see Priestley [10, §4.9] and
White [14]), but I shall only be concerned here with an informal con-
cept along the lines of “what the programmer intends when they are
writing the program” (an informal concept which could, in princi-
ple, be elucidated by asking the programmer what, for example, a
particular variable represents).

I shall definitely not be viewing the universal Turing machine as an
idea which dropped from heaven, and which was then triumphantly
implemented in both hardware and the design of programming lan-
guages. Furthermore, many of the ideas of Turing and his contempo-
raries were actually influential in the practice of programming and in
the design of hardware, without passing through the idea of the uni-
versal Turing machine: Turing had more ideas than that, and those
other ideas were also influential. The connection between computers
and universal Turing machines was not appreciated by many of Tur-
ing’s contemporaries (Priestley [10, §3.7]). And, although the idea of
the Turing machine has had a considerable influence on, for exam-
ple, language design, modern computers are not in any simple way
Turing machines, as we will come to see later.

Furthermore, this process is historical, and everything is always
changing. For all of his influence, modern programming languages
and programming practice deviate quite markedly from Turing’s own
ideas: for example, Turing was extraordinarily attached to the idea of
self-modifying code (Priestley [10, §3.4]), an idea the attractiveness
of which is hard to appreciate from the current perspective.

2 The Idea of a Variable
One of the key ideas in programming is the idea of a variable: there
are basically two stories to tell about it, one being about the idea of a
variable in general, the other being the idea of a variable in assembly
language programming. We will tell the first story first, because these
ideas will be more familiar to the modern audience: nevertheless,
there are certain distinct features of variables in assembler, which
will will also describe.

2.1 In General
In modern terms, a variable is an area of memory with a name at-
tached [13, pp. 37f.]; names are declared in computer programs, and
they persist during the execution of the program (so long as they are
in scope, a concept which we will come to later) and these declara-
tions are laid down in the program, rather than being artefacts gen-
erated in a particular execution of the program. Variables may have
values, and these values can be inspected and updated.

There is nothing like this in the idea of a Turing machine: Turing
machines certainly have tapes, and locations in the tape store values,
which can be read or written. But locations of the tape do not have
names (in fact, although the locations are arranged in order along
a tape with a beginning but no end, and so implicitly can be num-
bered, these numbers are not available to the machine). Furthermore,
although a Turing machine can read and write to the tape, there is
no concept of updating the same entity which we have when we up-
date a variable: if a Turing machine writes to a tape location, this

could correspond to updating a value in the algorithm which the Tur-
ing machine program implements, but it could equally well be the
replacement of a temporary value with another unrelated temporary
value.

Variables in programming languages are also not the same as vari-
ables in mathematics, since they can be updated, and mathematical
entities, whatever they are, do not change. Assignment statements are
the statements by which variables receive values or have their values
updated: they are usually written with an equality sign, thus:

x = x + 1

These equality signs do not stand for mathematical equalities: they
are not symmetric, for example (the assignment statement x+1 = x
does not make sense, because x+1 is not a variable, although x is).

However, variables certainly appear in Turing’s work, even in
1936: he described the implementation of algorithms in Turing ma-
chines by means of a notation which he called “machine tables”, or,
for short, m-tables. These tables would describe the behaviour of
the machine when it was presented with a particular symbol on the
tape and a particular internal configuration: the behaviour was rep-
resented by means of mathematical functions, and these functions
could contain free variables which would hold the value of the cur-
rently scanned symbol. So the idea of the variable – in the mathemat-
ical sense – certainly enters here.

One possible influence for the idea of updating variables is the
practice of numerical analysis, that is, the systematic calculation of
solutions to mathematical equations. Much of numerical analysis is
concerned with progressive approximation to, for example, the value
of an integral, or to an irrational number: one would start with a rough
approximation and then progressively improve it, using something
like Newton’s method. Although numbers are mathematical entities,
and thus cannot change, there is a very good sense in which one can
talk about changing, or updating, an approximation to a number; one
can see this at work in old textbooks of numerical analysis, which
frequently have quite detailed instructions about how to lay out such
calculations on a page (see Hartree [5]). And the practice of numeri-
cal analysis was, in fact, referred to by early computing researchers:
Howard Aiken and Grace Hopper write, describing the design of an
early computer, that

The development of numerical analysis . . . [has] reduced, in
effect, the processes of mathematical analysis to selected se-
quences of the five fundamental operations of arithmetic: addi-
tion, subtraction, multiplication, division, and reference to ta-
bles of previously computed results. The automatic sequence
controlled calculator was designed to carry out any selected se-
quence of these operations under completely automatic control.
(Aiken and Hopper [2, p. 386], cited in Priestley [10, p. 92])

Now early computers were largely used for carrying out numeri-
cal calculations (Priestley [10, §3.1]) – indeed the early computation
groups consulted established numerical analysts such as Hartree –
and so it is not inconceivable that the idea of a variable was at least
partly influenced by the practice of numerical analysis.

2.2 In Assembly Language

Computers typically hold numbers in memory, and memory locations
have addresses, which are numbers (in this respect, computers differ
from Turing machines). Addresses are used in several scenarios:

for data If we want to perform an operation, such as addition, on
data, then we will need the addresses of the arguments and the
address where the result is to be stored

for instructions if we are to perform a jump instruction, then we
will need the address of the instruction that execution is to jump
to; if we are to execute a subroutine, then we need the address of
the instruction where execution of the subroutine starts, and, when
the subroutine returns, we need the address of the instruction after
the calling instruction

Now it is generally speaking impractical to simply write instructions
with these numerical addresses in them: for one thing it is very error
prone, numbers not being very memorable. But the main disadvan-
tage is that there is no practical way of telling where in memory a
particular piece of code or data is going to reside. This is particularly
acute in the case of subroutines, because a subroutine may be called
more than once in a particular program, so that the return address
simply cannot be specified in advance.

This was recognised very early on. Turing discusses how to deal
with return addresses for subroutines by putting the return address of
the subroutine into memory:

When we wish to start on a subsidiary operation we need only
make a note of where we left off the major operation and then
apply the first instruction of the subsidiary. When the subsidiary
is over we look up the note and continue with the major opera-
tion (Turing, [12], cited in Priestley [10, §4.5, p. 104])

We should note that, although the precise details of “mak[ing] a note
of” have varied, this is still the same way that the return addresses of
subroutines are handled.

There still remains the problem of jumps. Turing, too, worked on
this problem: instructions were to be written in what Turing called
a “popular” format, and they were to be written, one instruction per
card, in “groups” (in practice, things like subroutines and the like:
they should be sequences of instructions which could be guaranteed
to end up in contiguous places in memory). Each instruction would
have associated with it the name of the group and its “detail figure”,
or place within the group. Programs would be constructed by taking
all the relevant cards (for the main routine, subroutines and so on),
collating them, and then assigning memory locations: from this one
could translate from group name and detail figure to a memory lo-
cation. Then one would have to replace all the memory addresses in
instructions (which would, of course, have been written in the popu-
lar format with group names and detail figures) with the actual mem-
ory addresses. Turing seems to have envisaged this being done by
hand (assisted by punched card manipulation machines, which were
common technology at the time), but he did recognise that it would
be something which could be done “within the machine”. (Priestley
[10, §4.5, p. 104])

The task of showing how such address translation could be done
within the machine was begun by Goldstine and von Neumann [4];
they proposed first loading the program and its subroutines, and then
running a “preparatory routine” which would perform the required
address modification. (Priestley [10, §4.5, p. 105])

2.3 Accommodations
We have seen here the problems that were raised by introducing vari-
ables and subroutines into computer programming: there is no di-
rect support for these things in the Turing machine, and there was
very rudimentary support, in the form of memory and instruction ad-
dresses, in the early computers. There were already human practices

– namely those developed for numerical analysis – which computers
needed to support, and the solution was to develop coding languages
and practices which were not too distant from what people were al-
ready doing by hand, and to fill the gap between human coding and
machine execution by a process of translation. So we see a process
of accommodation, driven by the gap between the hardware and the
pre-existing human practices.

3 Modern Hardware
In this section we will look at how modern hardware typically works.
One of the main problems here is that of speed disparity: the central
processing unit (CPU) of a modern computer executes a basic in-
struction in less than a nanosecond (complex instructions, like mul-
tiplication, might of course take longer), whereas hard disk access
will take tens of milliseconds. RAM access is intermediate between
the two. The ratio between CPU speed and hard disk speed is some-
what over a million. If the CPU had to wait milliseconds every time it
needed data for an instruction, then computers would be much slower
than they actually are. There are several technologies that we can
use to deal with this. None of them is directly under the control of
applications or systems programmers: they are designed by chip de-
signers, they (hopefully) make the hardware run faster, and they are
transparent: that is, programmers simply write the instructions they
would have written anyway, but the computer executes them faster
than it would have done without caching, pipelining, and so on.

3.1 Caching
This is the strategy of fetching data in relatively large units, and stor-
ing it in fast memory near where it is to be used. For example, mod-
ern CPUs have caches where they store data that they get from RAM:
they fetch data in large contiguous blocks, store it in their cache, and,
when they need more data from RAM, they check the cache first [7,
§5.3, pp. 383ff]. This generally works: with modern hardware, CPUs
will find the data in the cache about 90% of the time [6, p. B-10].

The reason why caching works, when it works, is what is called
data locality [7, §5.1, pp. 374ff]. This is the idea that data which is
relevant for a particular calculation is usually held contiguously: if
we have large amounts of data, then it will generally be in an array
or some large data structure of that sort, and that data structure will
(hopefully) be held contiguously. So if we are iterating along an ar-
ray, and if we cache the array in contiguous blocks, then most data
will be found in the cache: the only reason to go to RAM for data is
when we have already iterated through the data in the cache.

Similarly, instructions are stored in RAM in the order that they
occur in the program, and they are generally executed in that order
too. So caching tends to win here also.

However, data locality may fail in both of these scenarios. Two-
dimensional arrays (that is, arrays with two indices) can be thought
of as big matrices, and there are two ways of iterating over them: in
the first, you select column 0, iterate over that, then select column
1, iterate over that, and so on. For the other way of iterating, you do
the same thing but with rows rather than columns. Now if you write
array code in Java, it turns out that one of these ways gives you data
locality but the other way does not, so there is a large performance
penalty for doing it one way rather than another.

Consequently, although there are large gains to be made by
caching, they are not automatic: both for instructions and for data
the gains depend on the statistical character of the code or data con-
cerned.

3.2 Pipelining

Instruction execution in a CPU is generally performed in several
stages: first the instruction is fetched from RAM, then the CPU de-
cides what sort of instruction it is (which affects whether the instruc-
tion needs data, etc.), then the instruction is executed, and finally the
result is written back to RAM. These stages are generally performed
by different parts of the CPU, but they each depend on the previous
stage having been performed. But there is nothing wrong with exe-
cuting stage 1 for a particular instruction while the CPU is executing
Stage 2 for the previous instruction: this is called pipelining [7, §4.5,
pp. 272ff].

So, if we have a sequence of instructions like this

i1
i2
i3
. . .

then we could have a pipeline which, at successive times, was doing
the following:

t1 stage 1 of i1
t2 stage 1 of i2 stage 2 of i1
t3 stage 1 of i3 stage 2 of i2 stage 1 of i1

What can go wrong? Suppose, on the other hand, we have a loop:

for(i=0;i<4;i++) {
i1
i2
i3

}
i4

so that (if we have a 4-stage pipeline as above) we will execute in-
structions in the following order:

i1 i2 i3 i1 i2 i3 i1 i2 i3 i1 i2 i3 i4

However, the pipeline will fill up with, successively, i1, i2, i3, and
then (because it is the next instruction in the listing) i4. However
(unless this is the last time round the loop) the next instruction to be
executed after i3 is i1: but we cannot in general tell whether we
are going round the loop again until the last instruction of this loop
has been executed. And if then we have to start refilling the pipeline
from i1

Because of this, modern CPUs generally do branch prediction:
that is, at places where a branch might happen (end of a for loop,
beginning of a while loop, and so on) they try to guess what branch
might be taken, and keep filling the pipeline accordingly. For exam-
ple, it is generally a good idea to guess that, when you get to the end
of a for loop, you will continue execution from the beginning of it:
this is because most loops get executed more than once, and often
much more than once (there is no point in having them otherwise),
so that you will generally win by guessing that way.

Branch prediction, then, is like data locality: it is a statistical mat-
ter, and depends on code being written in a certain way. It would
certainly possible to write code in such a way that it would break
pipelining by forcing branch prediction to misbehave, but it would
probably be quite hard to do, and it would need some specialised
knowledge of what hardware it was to be run on (how many stages
in the pipeline, some details of its branch prediction, and so on).

3.3 Registers
It has always been recognised that it was advantageous to have fast
memory locations inside the CPU, and that these could be used for
storing frequently used data. These locations are called registers, or
accumulators, and have been part of computer design since the early
days (for example, the ENIAC – which started running in 1945 or so
– had 20 accumulators [10, p. 61]).

Registers can often achieve a considerable speedup. For example,
if we have a loop like this:

for (i=0;i<100;i++) {
i1
i2
i3

. . .
}

then we could, theoretically, read the loop variable i from the hard
disk every time it was to be used, and write it to hard disk every time
it was to be updated, but that would be very wasteful: the sensible
thing to do is to keep i in a register, initialise it to zero when we start
executing the loop, and to release the register after the end of the
loop: it need never even be stored in RAM. Assembly code allows
access to registers: in fact, many assemblers (MIPS, for example)
only allow arithmetic operations between the contents of registers,
and only allow the result to end up in a register. There are other in-
structions for reading data from RAM to a register (loading the data)
and for writing data from a register to RAM (storing the data). This
is the so-called load-store paradigm.

Now because they involve RAM access, load and store in-
structions are comparatively slow, so there is a great deal to be gained
by eliminating them as much as possible. For example, a store of
data from a register to a location, followed by a load of the same
data to the same register from the same location, can generally be
eliminated; the same situation, only with different registers, can gen-
erally be replaced by simply moving data from one register to an-
other, and so on. But a given CPU will only have a certain number of
registers, so one will inevitably encounter situations where one has
to store data in a particular register in order to make room for new
data. This is the problem of register allocation: how to decide in what
registers old data should be replaced by new data.

Now compilers, from languages like C or Fortran, would generally
emit assembly code for the relevant architecture, which would then
be assembled and run. It used to be the case that human program-
mers could generally write better and more efficient assembler than
compilers could produce (better register allocation, and so on): this
is no longer the case, because of progress with register allocation al-
gorithms. Thus, programmers’ contact with modern computers gen-
erally does not reach inside the CPU, and, in particular, it generally
does not deal with registers.

3.4 Hard Disks
Hard disks are, as is well-known, composed of a stack of rotating
magnetic platters together with a set of read/write heads which are
mounted on an arm that can move the heads in or out over the platters
(Hennessy and Patterson [7, §5.2, pp. 381ff]). The surfaces of each
platter are divided into concentric tracks: that is, if the heads are at a
fixed position, they will read or write from a particular track on each
surface as the disks go round. The set of all of the tracks which are
under the heads with the arm at a fixed position is called a cylinder.
Each track is divided into sectors.

Thus, to access the data in a particular sector, the disk must do the
following:

1. move the heads to the appropriate cylinder,
2. wait until the appropriate sector rotates under the head, and
3. read or write the data from that sector.

The average time for 1 is between 3 and 13 milliseconds, and the
average time for 2 is about 5 milliseconds: these are comparatively
long times in computer terms. It is obviously advantageous to take
advantage of contiguity: that is, if we successively read data, it would
be best if it came from the same cylinder.

However, this is very difficult to achieve. Modern hard disks have
hardware in them called disk controllers, which do several things.
One thing they do is to cache data as they read it from the disk or
before they write it to the disk: because they do this, they can re-
order reads and writes in order to minimise head movement. They
also do error checking (they record extra check bits with the data in
order to detect errors if they occur), they monitor errors, and they
can move data off a sector and onto another if they think a sector
is deteriorating. Because of this, it is very hard to tell whether data
is located contiguously or not: blocks of data could start off close to
each other, but end up distant because of data movement. None of this
is under the control of programmers, and so optimisations that used
to be possible are now no longer possible. On the other hand, disk
are now genuinely faster and more reliable, due to more intelligent
disk controllers, so this is probably a net gain.

3.5 Accommodations

We have seen that the assembly programmer sees a particular view
of the workings of a computer: the programmer can load and store
data from the RAM to the CPU, can work on it in the CPU, and
gets a generally sequential view of the execution of instructions. The
programmer can also access hard disks, and these hard disks are or-
ganised in cylinders and tracks and sectors. None of this is strictly
speaking true: data is cached between RAM and the CPU, and in the
disk controller. Instructions are not strictly executed one at a time,
but they overlap due to pipelining. And the hard disk geometry as
seen by the programmer is an idealisation: data movement makes it
very difficult to optimise the location of data on a hard drive.

So, again, there are accommodations between the programmers’
view and what goes on in hardware. The programmer has a partic-
ular view of the hardware: as we have seen, it was rather carefully
constructed in order to allow for entities like variables (and, on top
of these, a universe of complex data types). The various optimisations
that we have seen are all built on top of this view, and, to a great ex-
tent, they work to maintain it, at the cost of the strict correctness of
the view.

Furthermore, most of these optimisations are not guaranteed to
work, but only work given programs and tasks with a particular sta-
tistical distribution. Optimisation is generally done to make the com-
mon case (i.e. what programs mostly do) fast. So human behaviour
has an effect on this: the things that people want to do are usually
what is optimised for (computer games are a case in point). Given all
this, it is not surprising that computer benchmarks are a contentious,
and ultimately political, subject (Hennessy and Patterson [7, §1.9,
pp.46ff]).

4 Semantics

4.1 Compositionality

Since there have been programming languages, there has been work
on their semantics: this is not surprising, firstly because many of the
people who developed programming languages were logicians and
thus naturally thought in terms of semantics, and secondly because
computer scientists wanted to do things like prove that programs ran
correctly, which is a question which could conceivably be answered
by investigating the semantics of programs.

This proved to be a difficult problem. As Priestley remarks, “se-
mantics for logic are typically compositional” [10, p. 113]: that is,
logical formulae are generally built up from smaller components, and
we can get the semantics of the larger pieces (that is, the mathemat-
ical objects they stand for) by composing the semantics for smaller
pieces. It would be natural to try to define a semantics for program-
ming language in the same sort of way. However, it is not straightfor-
ward: consider, for example, one of the simplest ways of combining
commands in programming languages, namely concatenating them:

command1
command2

which says that command 2 should be executed after command 1.
What mathematical objects correspond to these commands? How do
we combine them?

It was some time before good answers to these problems emerged:
decisive breakthroughs were made by Strachey and his school in Ox-
ford in the 70s [14, 11]. These results did not merely allow a mathe-
matical analysis, but they led towards an understanding of the space
of possible programming languages. In particular, they put into per-
spective the so-called functional languages: these are languages in
which variables have fixed values, that is, their values can only be
defined and read, but not updated. These languages have good math-
ematical properties, which made their semantics quite perspicuous.
In particular, Abramsky [1] has produced a semantically-based tax-
onomy of a large collection of languages, based on functional pro-
gramming but with added features; the semantics is based on the
game-theoretic approach to logic pioneered by Lorenzen [8].

4.2 Accommodations

This development is essentially the development of mathematical
tools to investigate what had gone before. However, there is an added
complication because, as we have seen, previous stages of computer
use were based not merely on computer hardware but on human prac-
tices of using that hardware. There was, of course, already a great
deal of mathematics associated with the use of computers to solve
numerical problems in physics or engineering, and particularly there
was a great deal of sophisticated numerical analysis and the analy-
sis of algorithms. However, the work of Strachey and his school was
explicitly non-numerical: it was concerned to develop an abstract se-
mantics of computer languages. Abramsky’s game-theoretic seman-
tics is especially noteworthy: Lorenzen’s concept of game is quite
abstract, and thus can be applied on both the human side and the
computer side, but it also enables a very rich theory of both human-
computer and computer-computer interaction.

As well as the techniques, we should also consider the results of
this development. It has allowed a certain reflective grasp of the tech-
nology: people are now asking questions not just about the program-
ming languages that we happen to have, but also about possible pro-

gramming languages and what advantages and disadvantages they
might offer.

5 Further Pressures
5.1 The Advent of Multicore Computers
Over the last several decades there has been a remarkable trend: com-
puters have become faster and more powerful, while becoming, if
anything, cheaper (Hennessy and Patterson, [7, §1.7, pp. 40ff]). This
now seems to be coming to an end: CPU clock speeds are not in-
creasing any more. Rather, hardware manufacturers are turning to
multicore hardware,3 that is, hardware designs which have more than
one processor on a chip (Hennessy and Patterson [7, §1.7, pp. 40ff]).
This change to multicore hardware means a change from serial to
parallel processing, that is, processing in which many computations
can go on at one time. This is a fundamental change, the emotional
impact of which is perhaps best captured in James Mickens’ essay
“The Slow Winter” [9].

Why might this be so fundamental? Since very early in the devel-
opment of computers, there was a general pressure towards strictly
serial computers: programmers should be able to write a series of
instructions and be assured that the machine would execute them in
that order. Early computers quite often had some capacity for par-
allel programming, but programmers – and competent programmers
at that – generally found this very difficult to cope with: as Eckert
writes of programming the ENIAC,

In thinking out the various operations of this machine, if they
can be thought out in a purely serial fashion, it is not necessary
to worry about any irrelevant timing between the two steps. . . .
The human brain does not think in several parallel channels
at the same time: it usually thinks these things out step by step.
Therefore, in all ways, it is found exceedingly desirable to build
the machine so that only single steps are performed at any time.
The ENIAC is usually used in this way. (J.P. Eckert Jr [3], cited
in [10, p. 94])

Note “usually”: it was obviously possible to use the ENIAC in a non-
serial way. However, because of the perceived difficulty of parallel
programming, seriality was enforced. And programming has gener-
ally remained quite serial ever since; there are niches in which paral-
lel programming is used (mostly out of necessity), but, for example,
the average undergraduate computer science curriculum has very lit-
tle parallel programming in it.

5.2 Accommodations
First some history: it has been recognised for a long while that func-
tional programming might offer certain advantages, mainly because
of its more perspicuous mathematical structure. On the other hand,
it has also been the case that functional programming is not very
popular: it has the reputation of being hard to learn, and functional
programs have the reputation of not performing well.

Several things are changing, however. Universities are starting to
teach functional programming, or are resuming the teaching of it (my

3 This whole historical development is related in some way to Moore’s law
[16], that is, the observation that the number of transistors per chip has been
doubling every eighteen months since 1970 or so. The change to multicore
hardware means that this increase can continue, although, since each chip
now has several cores (i.e. processors), the number of transistors per core
has levelled off. Similarly, the clock speed of CPUs has levelled off at about
2-4 GHz.

university, for example, has recently started teaching functional pro-
gramming again after about a decade in which it was not taught).
There are also several prestigious applications of either pure func-
tional programming or of programming in a functional idiom: for
example, there is a framework called Hadoop,4 which is used for the
parallel processing of big data, and which, although it is written in
the non-functional language Java, is based on a functional program-
ming paradigm called map-reduce. And it turns out that, provided
that people program with Hadoop in a fairly disciplined way, they
can get the advantages of functional programming without having to
learn to cope with purely functional languages. So this constitutes
a successful accommodation: it is not the functional programming
paradise, in which everyone would program in beautiful functional
programming languages, that messianic functional programming en-
thusiasts used to dream about. It is also a rather niche application,
and it does not tell us much about how to do parallel programming
in other contexts. But it is an example of the sort of accommodations
that people make in order to deal with the technology that they have
available, and the sort of human systems that they have available.
And, as well as the purely technological issues, some of the issues
at play here are how the humans make sense of the technology that
they have, and how they adapt the technology so that they can make
sense of it.

REFERENCES
[1] Samson Abramsky, ‘Games in the semantics of programming lan-

guages’, in Proceedings of the 11th Amsterdam Colloquium,, eds.,
M. Stokhof P. Dekker and Y. Venema, (1997).

[2] Howard Aiken and Grace Hopper, ‘The automatic sequence controlled
calculator’, Electrical Engineering, 65, 384–391, 449–454, 522–528,
(1946).

[3] J.P Eckert Jr, ‘A preview of a digital computing machine’. Lecture
delivered 15 July 1946.

[4] H. H. Goldstine and J von Neumann, ‘Planning and coding problems
for an electronic computing instrument, part ii, volume 3’, Technical
report, Institute for Advanced Study, Princeton, (1948‘).

[5] Douglas Rayner Hartree, Numerical Analysis, Clarendon, Oxford,
1952.

[6] John L. Hennessy and David A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, 5th edn., 2012.

[7] John L. Hennessy and David A. Patterson, Computer Organisation
and Design: The Hardware-Software Interface, Morgan Kaufmann, 5th
edn., 2014.

[8] P. Lorenzen, Normative Logic and Ethics, Bibliographisches Institut,
1984.

[9] James Mickens. The slow winter. Available online at
http://research.microsoft.com/en-us/people/
mickens/theslowwinter.pdf.

[10] Peter Mark Priestley, Logic and the Development of Programming Lan-
guages, 1930–1075, Ph.D. dissertation, University College London,
2008.

[11] Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory, MIT Press, Cambridge, MA, 1977.

[12] Alan M. Turing, ‘Proposal for development in the mathematics depart-
ment of an automatic computing engine (ACE)’, Technical report, Na-
tional Physical Laboratory, Teddington, UK, (1946).

[13] David A Watt, Programming Language Concepts and Paradigms, Pren-
tice Hall, 1990.

[14] G. Graham White, ‘The philosophy of programming languages’, in The
Blackwell Guide to the Philosophy of Computing and Information, ed.,
L. Floridi, 237–247, Blackwell, (2004).

[15] Wikipedia. MIPS architecture — wikipedia, the free encyclopedia,
2013. [Online; accessed 30-December-2013].

[16] Wikipedia. Moore’s law — wikipedia, the free encyclopedia, 2014.
[Online; accessed 3-January-2014].

4 See http://hadoop.apache.org/

