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Abstract.

The development of computational models to provide explana-

tions of psychological data can be achieved using semi-automated

search techniques, such as genetic programming. One challenge with

these techniques is to control the type of model that is evolved to be

cognitively plausible – a typical problem is that of “bloating”, where

continued evolution generates models of increasing size without im-

proving overall fitness. In this paper we describe a system for rep-

resenting psychological data, a class of process-based models, and

algorithms for evolving models. We apply this system to the delayed-

match-to-sample task. We show how the challenge of bloating may

be addressed by extending the fitness function to include measures

of cognitive performance.

1 Introduction

Computational modelling traditionally involves the development of

cognitive models to suit one or more empirical results. Within psy-

chology, the number of possible results that may be modelled is in-

creasing, leading to a “big data” problem: the large number makes

it challenging to develop computational models to understand all of

the results [4, 6, 13]. As is occurring in other areas of science, one

approach to converting data into theoretical understanding is to use

automatic techniques to create suitable models [2, 16]. In this paper,

we look at our current progress in constructing a semi-automated sys-

tem to develop computational models for psychological data, using

genetic programming to manage the search for viable models.

We formalise the overall process of model construction into a

number of separate stages. The first set of stages provides the raw

data for the experiments to be modelled. This includes the definition

of the experiment, the measurements to capture, and the primitive

operators from which the models will be constructed. This first set

of stages requires some work from the researcher for each experi-

ment. The second set of stages is responsible for exploring the space

of possible models and selecting the final model or models for fur-

ther investigation by the researcher. This second stage is built around

a genetic-programming system, which uses evolutionary computa-

tion to generate and test many thousands of potential models, search-
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ing for one which meets the requirements of the experiment and any

additional measures of model parsimony or generalisability that the

modeller imposes.

One of the standard problems confronting researchers using ge-

netic programming is that of bloat, defined as “program growth with-

out (significant) return in terms of fitness.” [15, p.101]. As the evolu-

tionary cycles continue, the average size of the individuals within the

population tends to increase, without the fitness level generally im-

proving. There are a number of techniques for attempting to tackle

bloat. Koza [8] uses a simple cut-off parameter: if any individual is

above a given size, it is not added to the evolving population. An

alternative, used here, is to modify the fitness function to include a

measure of the size of the program.

In this paper, we develop cognitive models of psychological data.

Cognitive modelling has a close relationship with artificial intelli-

gence, but also has some additional properties. One of these key dif-

ferences has been summed up in the following quote:

AI can have two purposes. One is to use the power of computers

to augment human thinking, just as we use motors to augment

human or horse power. Robotics and expert systems are ma-

jor branches of that. The other is to use a computer’s artificial

intelligence to understand how humans think. In a humanoid

way. If you test your programs not merely by what they can

accomplish, but how they accomplish it, then you’re really do-

ing cognitive science; you’re using AI to understand the human

mind. (Herbert Simon, in an interview with Doug Stewart. [18])

We can capture ‘how’ the program is working by comparing fit-

ness against target values obtained from human experiments: an ex-

ample would be simulated time to run a program compared with hu-

man reaction times. These comparisons restrict the space of possible

models; for example, optimising the reaction time tends to limit the

size and structure of the programs generated by the evolutionary pro-

cess, because only programs which run close to the target time will

produce a good fitness score. These comparisons are in addition to

the measured fitness of the model at the specified task. The system

then has the character of a multi-objective optimisation system, in

which several objective functions must be optimised.

We begin this paper with an explanation of how the experiments

and data are defined and presented to the models, before giving an

overview of how genetic programming is used to generate viable

models. We then explore the problem of “bloating” and the search

for parsimonious models in the delayed-match-to-sample task, be-

fore finishing with a discussion and conclusion.



2 Evolving Computational Models

Our proposed system is based on the standard characterisation of sci-

entific research as a heuristic search through a combinatorially large

space [10]. The central idea is that computational models are com-

puter programs, which can be tested in a simulated experiment to

obtain predicted results. We evaluate the models by comparing their

predicted results with the results obtained by humans in a similar ex-

periment. The search space is defined as the space of possible com-

puter programs.

Figure 1. Schematic diagram of system

We divide the system up into a number of stages, as illustrated in

Figure 1. The experiment(s) to test are defined in the ‘Theory Evalu-

ation Environment,’ with the target human data contained in ‘Exper-

imental Data.’ The space of potential computer programs are defined

by the ‘Set of Operators.’ There are many techniques for managing

the search through the space of potential computer programs: in this

paper we use a genetic-programming approach [8, 15]. The search

process is controlled using the ‘Set of Initial Theories’ and ‘Set of

Parameters,’ and attempts to optimise the programs against the ‘Fit-

ness Function.’

The genetic-programming system works by evolving a population

of candidate models. An initial population of models is either con-

structed randomly or seeded from earlier results. Then, processes of

mutation and crossover are used to generate a new population, using

the fitness function to prefer new models based on the better per-

forming models in the current population. The population is evolved

in this way for a number of generations, and the best model in the

final population is returned as the ‘Cognitive Theory.’ We discuss

these processes in more detail in the rest of this section.

2.1 Experimental Constraints and Fitness

The Theory Evaluation Environment is responsible for managing the

experimental data, and evaluating a fitness function on each of the

candidate models. Each set of experimental data is considered as a

constraint on the model, and is defined from three pieces of informa-

tion (following [9]):

1. The experimental setting, consisting of its stimuli, and the separa-

tion of the stimuli into training and transfer sets.

2. The data collected from the participants.

3. The measure of fit used to compare the model’s performance with

the participants’.

Constraints can take many forms, and the closeness of the pre-

dicted result to the target result can be measured in different ways. In

the experiment below, the constraints are the absolute difference from

the target average performance and/or reaction time. Constraints may

use other error functions or measure qualitative information, such as

how close the model’s results are to a particular relationship, such as

logarithmic.

The genetic-programming system uses a measure of fitness to as-

sess the quality of models. In the experiments below, we combine up

to three separate components to make up this fitness function. These

components are:

1. The overall performance of the model at the task;

2. The reaction time of the model when doing the task; and

3. The model complexity, measured as the size of the program.

The optimisation literature offers a range of techniques for han-

dling separate components in combination (single-objective) or in-

dependently (multi-objective); see [9] for an overview. In this paper,

we combine components by simply adding the separate components

together to make an overall fitness function to optimise.

2.2 Model Definitions

The models are created by combining operators from a Set of Oper-

ators; the operators and the rules for their combination form a theory

language for expressing cognitive models. In principle, these opera-

tors can be defined so as to create almost any form of computational

model, from symbolic to connectionist. Within this paper, we fol-

low [3] and define a symbolic, process-based class of models. The

models have a short-term memory, of three items, and can read from

three input positions. The model also has a “current value,” used for

intermediate results.

The operators are shown in Table 1. The operator Input1, for

example, reads the current value of input position 1 into the cur-

rent value. The operator Compare23 will compare the second and

third STM locations, placing true into the current value if they are the

same, or false if not. Prog2 is used to chain two operators together,

to perform in sequence.

Each operator has a time cost to it, and the total time cost is used

to match the delay in making a decision; the time costs are shown

in the second column of Table 1. Notice that some of the operations

are repeated for different choices of STM position or input position.

For example, AccessStm1 accesses position 1 of STM, and oper-

ators AccessStm2 and AccessStm3 are also included to access

positions 2 and 3 of STM – these three operations are represented

in a single row of the table, to save space. Similarly, there are three

comparison operation to compare STM positions 1 and 2, 2 and 3 or

1 and 3.

Each model is represented as a program, as shown in Figure 2,

which illustrates both the graphical representation for the program,

and its Lisp S-expression syntax, as used in the output from the evo-

lutionary system. This program is then “run” in the simulated exper-

iment, to generate a set of simulated results, to be compared with the

human data, using the fitness function.

2.3 Search Using Genetic Programming

We manage the search through the space of candidate models us-

ing a form of evolutionary computation known as genetic program-

ming [8, 15]. Evolutionary computation is an approach to optimi-

sation that applies a Darwinian evolutionary process to the current



Operator Time (ms) Description

AccessStm1 (2 or 3) 50 Put item in STM slot 1 (2 or 3) into current value

Compare12 (23 or 13) 200 Current value is true/false if STM item 1/2/3 = item 2/3/1

If 200 Selects between two operators based on current value

Input1 (2 or 3) 200 Read input position 1 (2 or 3) into current value

Nil 50 Set current value to 0 (’false’)

Prog2 50 Sequentially do two operators

PutSTM 50 Push current value on to STM

Table 1. Operators used in DMTS models
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Figure 2. Example of program: The same program is shown in its graphical representation (upper), and as an S-expression.

population of candidate models. Key characteristics of this process

are the preferential selection of the most fit models for generating

the next population. These selected models are then modified using

mutation, to introduce random changes, and crossover, to produce

new models from combinations of existing ones. Figure 3 illustrates

these two forms of modification:

Mutation takes an existing part of the tree and replaces it with an

equivalent element. In the example shown, a ‘+’ operator has re-

placed the root (top) node of the tree.

Crossover takes two existing trees, selects a sub-tree at random in

each, and then creates two new trees by swapping the sub-trees

Figure 3. Example of genetic-programming processes of mutation and
crossover

over. In the example shown, the sub-tree (+ Y 4) is swapped

with the sub-tree S.

The search process begins from an initial population formed from

a random sample of models, generated by random combinations of

the operators. In each cycle of evolution, the models in the population

are evaluated with the fitness function. A new population is then gen-

erated using the mutation and crossover processes on selected mod-

els from the existing population. Models are preferentially selected

from the existing population based on the fitness value. Additionally,

the top few models (known as the ‘elite’) are automatically added to

the new population, unchanged. The inherent variability in the pro-

cess means that two runs of the search process are not guaranteed to

produce the same result.

There are a number of parameters which can be adjusted to fine-

tune the search for a suitable model. Two of the more important are

the number of cycles of evolution performed, and the size of the pop-

ulation at each cycle; in general, larger populations permit greater

diversity of models. Other parameters include the number of elite

models to retain in the new population, the ways in which mutation

and crossover are performed, and the composition of random or seed

models used for the first cycle.

We use the ECJ toolkit [12], a Java-based genetic-programming

toolkit, in our experiments. This toolkit provides a number of prac-

tical advantages, including the ability to run across multiple proces-



sors, and an object-oriented approach which supports a natural sub-

division of the system into different modules for programming.

3 Experiment: Delayed Match to Sample

The Delayed Match To Sample (DMTS) task explores processes of

short-term memory, categorisation and object recognition. Each trial

in the experiment involves presenting a stimulus to the participant.

After a delay, two stimuli are presented, one being the first repeated,

and the other new. The participant must now identify which was pre-

sented first. Numerous studies have used this task, comparing results

from different conditions, and looking at which areas of the brain are

involved, including [1, 3, 7].

Here, we build on the work of [3] and develop some models of

DMTS to optimise not only for performance, but also for reaction

time (which was not used in [3]). The aim of the experiment is to

explore issues of over-fitting, model parsimony and the problem of

bloating.

We use three different measures:

1. Performance is measured by calculating the proportion of cor-

rect responses out of the total. The absolute difference between

this and the target response (from Table 2) forms the performance

measure. The smaller this difference is, the ‘more fit’ the model

is.

2. The size of the models is measured by counting the number of

nodes in the tree, up to a maximum of 1000, and then dividing by

1000. Hence, smaller models produce a smaller value, and hence

are ‘more fit’ than larger models.

3. The reaction time is measured by accumulating the simulated time

for the operators used when making a decision, and calculating the

absolute difference with the target reaction time observed with the

human participants (from Table 2).

We run four evolutionary cycles, using four conditions, varying

the fitness function in each case:

Condition 1 measures performance only (as in [3]),

Condition 2 measures performance and uses the size of the models

as a measure of parsimony,

Condition 3 measures performance and reaction time, and

Condition 4 uses all three measures: performance, reaction time

and model size.

The combined fitness function is a real number, formed by adding

the contribution from the relevant components in each condition,

with 0 being a measure for a ‘perfect’ model, and larger values rep-

resenting increasingly unfit models.

3.1 Experimental Setup

We attempt to model the experiment by [1], which used two sets

of stimuli: tools and animals. Six stimuli were in each set, and four

subjects were presented with sixty trials. Chao et al state there was no

significant difference between results for the two sets; as it is difficult

in our experiments to make a separation between tools and animals

we just use the overall results for tools, as given in Table 2.

The data for the stimuli were simulated with random sequences

of the digits 1 to 6. We assume there is no confusion in identify-

ing a given stimulus. A further assumption is that our models are

presented with all three stimuli simultaneously, and the task is to

determine which of the second and third stimuli is the same as the

Performance Time

Stimulus Mean Standard Mean Standard

Deviation Deviation

Tools 95% ± 1.2% 767ms ± 27.5ms

Table 2. Human performance on DMTS task (percentage correct and
reaction time)

first. These assumptions (also made in [3]) are reasonable as a test of

our methodology, but are different from the original DMTS task and

would need to be revisited before making strong claims of theoretical

understanding from the models.

The models are defined by the operators given earlier in Table 1.

We used a standard set of parameters for the evolution, with 500

individuals in each population, the best 50 (elite) preserved across

generations, and let the system run for 500 generations. Results for

each condition were averaged over four runs of each model, to simu-

late the four participants, and sixty trials for each participant. Finally,

results for each condition were averaged over ten different runs.

3.2 Experimental Results

Figure 4 shows a graph of performance against generation for the

four conditions; the performance shown is the difference between the

performance of the best individual found to that point compared with

the target human value. This graph shows how the different achieved

performance levels compare. Condition 1 produces the ‘best’ value

for performance, with an almost perfect score; the score is so low,

and the models so complex, that condition 1 is a typical case of over-

fitting. Condition 2 includes the size of the models, and produces

a low performance score. Conditions 3 and 4 include the reaction

time, which is an additional constraint on the models; this means the

models are not so focussed on performance, and hence the scores are

not as low as for condition 1. Most of the improvement occurs in the

first 100-150 cycles, with only slight improvements found later.

Figure 5 shows a graph of program size against generation for the

four conditions; the size shown is the size of the best individual found

to that point (averaged over 10 separate runs). This graph shows how

the different conditions produce individuals of different sizes. The

most noticeable point of this graph is that the size of the models

is smallest in conditions 3 and 4, which included a measure of the

reaction time. Condition 2, which used a traditional measure of par-

simony, also had a dramatic impact on the program size, but not as

large as the measure of reaction time. As with performance, most of

the changes in program size occur in the first 100 cycles.

Table 3 shows in tabular format the average performance, reaction

time and size of the best models created by each of the four con-

ditions, averaged over 10 runs. The performance and reaction-time

measures are the absolute differences from the human times, shown

in Table 2, and so smaller values are better. This table reinforces the

impression from the above two graphs that a good compromise be-

tween reduced model size and excellent performance is obtained by

introducing the reaction time constraint.

Adding in a measure of parsimony has a much smaller impact.

The models generated by conditions 1 and 2 did not evolve against

reaction time, but we can see that the use of parsimony has gener-

ated models which produce a quicker reaction time. In contrast, those

models created by conditions 3 and 4, which included reaction time

in the fitness function, produce a tighter fit to reaction time, as may

be expected.
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Figure 4. Performance against generation for the four conditions. Results
are the mean over 10 runs. (Lower values of performance are better.)

Condition

Measure 1 2 3 4

Performance 0.001 0.092 0.221 0.222
Reaction Time 4.395 0.672 0.025 0.012

Model Size 564 50.2 11.4 10.4

Table 3. Average results for best individual models created in each
condition

3.3 Summary

This experiment is an extension of those previously reported in [3].

The results here differ firstly in that the experiment is implemented in

Java using the ECJ toolkit, as described above. Also, the experiments

include the timing of decisions as well as overall performance. Fi-

nally, larger populations with more cycles were used, and a measure

of parsimony, in terms of program size, has been included to address

issues of bloating. In comparison with [3] the models generated in

condition 1 tend to be larger, which is due to different implementa-

tions of mutation and crossover in the genetic-programming libraries

used. Also, the results here produce a better overall fitness score.

The main conclusion from this study is that the use of cognitive

measures of how the model is performing, such as reaction time, can

help reduce the overall complexity of the model, whilst retaining an

acceptable level of task performance when compared with human

performance. In effect, additional measures provide extra constraints

on the space of viable models which can be generated from the set

of operators. As is evident from the almost identical results of con-

ditions 3 and 4, the inclusion of reaction time makes the need for a

direct measure of parsimony, such as program size, unnecessary.
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Figure 5. Program size against generation for the four conditions. Results
are the mean of the size of the best-performing individual over 10 runs.

4 Discussion

Many areas of science are developing computational techniques to

convert large amounts of raw data into theoretical understanding or

practical algorithms. Although this idea has been explored at differ-

ent times in the history of artificial intelligence [8, 11], ever increas-

ing computational power and new theoretical insights have made sig-

nificant advances possible in more recent times. Another driver of

this recent interest in automatic techniques to analyse data is the in-

creased availability of data in most sciences, due in part to the ex-

istence of the internet and in part to the larger amount of published

research.

In most cases, the analysis techniques rely on a search over a de-

fined space of potential functions or programs [10]. For example, in

robotics, Deisenroth et al. [2] use a search over functions defined by

Gaussian Processes to efficiently learn algorithms to control complex

behaviours. A genetic-programming approach, with some parallels to

the one adopted here and in [3], has been used in a physics setting,

to find the laws of motion of a pendulum’s swing [16].

In this paper, we have examined a genetic-programming approach

to developing cognitive theories of psychological behaviour. We have

explained the basic principles of genetic programming, the problem

domain (DMTS), and the space of potential theories. Our main in-

terest in this paper was to consider the role of different objectives

in the fitness function in generating different models, and their per-

formance fitness. The experiment compared models using a simple

measure of performance fitness, with models developed additionally

with either a constraint on timing or a measure of parsimony or both.

Overall, we found that including the constraint on time led to sim-

ilar benefits to including a measure of parsimony. This result may

be interpreted as suggesting that developing cognitive models should

use measures based on ‘how’ the task is performed (such as reaction

time), as well as ‘what’ is done (such as overall task performance).



The optimisation process is better constrained by attempting to de-

velop models which better understand the human mind, using more

of the available psychological data.

In future work, we intend to extend the models to tackle problems

in areas such as attention, categorisation, and decision making, aim-

ing to find models which will generalise as much as possible across

all areas. The framework we have presented here should support such

extensions, as its three principal elements have all been separately

explored.

First, the genetic-programming system itself is general purpose

and robust. Almost two decades of application in many diverse ar-

eas has demonstrated its suitability in many different areas [8, 15].

Alternative fitness functions, diversity measures, evolutionary oper-

ators and optimisation schemes, such as single or multiple objective,

have all been explored in the literature.

Second, there is a prevalence of raw data in each of these areas.

As a simple example, the area of categorisation [9, 17] has attracted

many variations in the psychological literature, and dozens of differ-

ent published models.

Third, the general scheme for the models is an adaptation of

the general architecture used in symbolic cognitive modelling, as

used in systems such as CHREST [5] or Soar [14]. These systems

all have some kind of input/output controller, a long-term memory

and a short-term memory. Such cognitive architectures already have

proven successful in implementing models in areas such as mem-

ory recall, perception, problem solving, categorisation and language

learning. As we work with more complex domains, we expect to use

more of the properties of cognitive architectures within our models,

and these prior examples will help guide the choice of operators.

5 Conclusion

The research presented here forms part of a project leading towards

the development of programs that automatically and systematically

read scientific publications, make summaries of data, and develop

theories integrating and explaining the results of a large number of

experiments. We believe such programs will be increasingly impor-

tant to help tackle the “big data” issues in psychology, converting the

increasing number of empirical results into theoretical understand-

ing.
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